首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >A High-Performance Subcircuit Recognition Method Based on the Nonlinear Graph Optimization
【24h】

A High-Performance Subcircuit Recognition Method Based on the Nonlinear Graph Optimization

机译:基于非线性图优化的高性能子电路识别方法

获取原文
获取原文并翻译 | 示例

摘要

Subcircuit recognition (SR) is a problem of identifying instances of a small subcircuit in a larger circuit. Despite recent progress toward linear optimization-based SR algorithms, finding a large set of subcircuits in a multimillion transistor or gate-level netlist may still be too slow for many integrated-circuit computer-aided design applications. This paper describes a new high-performance method to identify subcircuits using a nonlinear graph optimization strategy. The method uses an advanced nonlinear technique to find a global minimum of the objective function associated with the SR problem. Unlike linear graph optimization, this method does not approximate the objective function by the first-order terms in its Taylor series expansion. In contrast, to increase the recognition rate, the second-order terms are exploited to form a set of nonlinear equations that describe the net and device match probabilities. Consequently, computing the match probabilities in the new approach is based on the nonlocal structure of connections between nets and devices. An iterative nonlinear version of the Kaczmarz method (KM) is used to solve the obtained set of nonlinear equations. The KM efficiency is improved by making an important modification in its updating scheme, which leads to fast and stable convergence of the recognition process. The experimental results show that the new method is on average three times faster than linear graph optimization algorithms such as the probabilistic match assignment algorithm
机译:子电路识别(SR)是识别大型电路中的小型子电路实例的问题。尽管最近在基于线性优化的SR算法方面取得了进展,但对于许多集成电路计算机辅助设计应用而言,在数百万个晶体管或门级网表中找到大量子电路可能仍然太慢。本文介绍了一种使用非线性图优化策略识别子电路的高性能方法。该方法使用先进的非线性技术来找到与SR问题相关的目标函数的全局最小值。与线性图优化不同,此方法在其泰勒级数展开中不通过一阶项近似目标函数。相反,为了提高识别率,利用了二阶项来形成描述网络和设备匹配概率的一组非线性方程。因此,在新方法中计算匹配概率是基于网络和设备之间连接的非局部结构。 Kaczmarz方法(KM)的迭代非线性版本用于求解所获得的非线性方程组。通过对其更新方案进行重大修改来提高KM效率,从而导致识别过程快速稳定地收敛。实验结果表明,该新方法平均比线性图优化算法(如概率匹配分配算法)快三倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号