首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >ReSPIR: A Response Surface-Based Pareto Iterative Refinement for Application-Specific Design Space Exploration
【24h】

ReSPIR: A Response Surface-Based Pareto Iterative Refinement for Application-Specific Design Space Exploration

机译:ReSPIR:基于响应曲面的帕累托迭代优化,用于特定于应用程序的设计空间探索

获取原文
获取原文并翻译 | 示例

摘要

Application-specific multiprocessor systems-on-chip (MPSoCs) are usually designed by using a platform-based approach, where a wide range of customizable parameters can be tuned to find the best tradeoff in terms of the selected figures of merit (such as energy, delay, and area). This optimization phase is called design space exploration (DSE), and it usually consists of a multiobjective optimization problem with multiple constraints. So far, several heuristic techniques have been proposed to address the DSE problem for MPSoC, but they are not efficient enough for managing the application-specific constraints and for identifying the Pareto front. In this paper, an efficient DSE methodology for application-specific MPSoC is proposed. The methodology is efficient in the sense that it is capable of finding a set of good candidate architecture configurations by minimizing the number of simulations to be executed. The methodology combines the design of experiments (DoEs) and response surface modeling (RSM) techniques for managing system-level constraints. First, the DoE phase generates an initial plan of experiments used to create a coarse view of the target design space to be explored by simulations. Then, a set of RSM techniques is used to refine the simulation-based exploration by exploiting the application-specific constraints to identify the maximum number of feasible solutions. To trade off the accuracy and efficiency of the proposed techniques, a set of experimental results for the customization of a symmetric shared-memory on-chip multiprocessor with actual workloads has been reported in this paper.
机译:专用多处理器片上系统(MPSoC)通常是使用基于平台的方法来设计的,在该方法中,可以调整各种可自定义参数,以根据选定的品质因数(例如能量)找到最佳的权衡。 ,延迟和面积)。该优化阶段称为设计空间探索(DSE),通常由具有多个约束的多目标优化问题组成。到目前为止,已经提出了几种启发式技术来解决MPSoC的DSE问题,但是它们不足以管理特定于应用程序的约束和识别Pareto前沿。本文针对特定的MPSoC提出了一种有效的DSE方法。该方法在能够通过最小化要执行的仿真的数量来找到一组好的候选架构配置的意义上是有效的。该方法结合了实验(DoE)设计和响应面建模(RSM)技术,用于管理系统级约束。首先,DoE阶段生成了一个初步的实验计划,该计划用于创建要通过仿真探索的目标设计空间的粗略视图。然后,使用一组RSM技术,通过利用特定于应用程序的约束来识别可行解的最大数量,从而完善基于仿真的探索。为了权衡所提出技术的准确性和效率,本文报道了一组针对实际负载的对称共享内存片上多处理器定制的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号