首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >$A$-Stable and $L$-Stable High-Order Integration Methods for Solving Stiff Differential Equations
【24h】

$A$-Stable and $L$-Stable High-Order Integration Methods for Solving Stiff Differential Equations

机译:求解刚性微分方程的$ A $稳定和$ L $稳定高阶积分方法

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a new $A$- and $L$-stable integration method for simulating the time-domain transient response of nonlinear circuits. The proposed method, which is based on the Obreshkov formula, can be made of arbitrary high order while maintaining the $A$-stability property. The new method allows for the adoption of higher order integration methods for the transient analysis of electronic circuits while enabling them to take larger step sizes without violating the stability, leading to faster simulations. The method can be run in an $L$-stable mode to handle circuits with extremely stiff equations. Necessary theoretical foundations, implementation details, error-control mechanisms, and computational results are presented.
机译:本文介绍了一种新的$ A $和$ L $稳定积分方法,用于仿真非线性电路的时域瞬态响应。所提出的方法基于Obreshkov公式,可以由任意高阶组成,同时保持$ A $-稳定性。新方法允许对电子电路进行瞬态分析时采用更高阶的积分方法,同时使它们能够采取更大的步长而又不会破坏稳定性,从而加快了仿真速度。该方法可以在$ L $稳定模式下运行,以处理具有极端刚性方程的电路。介绍了必要的理论基础,实现细节,错误控制机制和计算结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号