首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Fast Monte Carlo Estimation of Timing Yield With Importance Sampling and Transistor-Level Circuit Simulation
【24h】

Fast Monte Carlo Estimation of Timing Yield With Importance Sampling and Transistor-Level Circuit Simulation

机译:具有重要采样和晶体管级电路仿真的定时收益的快速蒙特卡洛估计

获取原文
获取原文并翻译 | 示例

摘要

Considerable effort has been expended in the electronic design automation community in trying to cope with the statistical timing problem. Most of this effort has been aimed at generalizing the static timing analyzers to the statistical case. On the other hand, detailed transistor-level simulations of the critical paths in a circuit are usually performed at the final stage of performance verification. We describe a transistor-level Monte Carlo (MC) technique which makes final transistor-level timing verification practically feasible. The MC method is used as a golden reference in assessing the accuracy of other timing yield estimation techniques. However, it is generally believed that it can not be used in practice as it requires too many costly transistor-level simulations. We present a novel approach to constructing an improved MC estimator for timing yield which provides the same accuracy as standard MC but at a cost of much fewer transistor-level simulations. This improved estimator is based on a unique combination of a variance reduction technique, importance sampling, and a cheap but approximate gate delay model. The results we present demonstrate that our improved yield estimator achieves the same accuracy as standard MC at a cost reduction reaching several orders of magnitude.
机译:在电子设计自动化社区中,为了解决统计时序问题已经付出了巨大的努力。这些工作的大部分旨在将静态时序分析器推广到统计情况。另一方面,通常在性能验证的最后阶段对电路中的关键路径进行详细的晶体管级仿真。我们描述了一种晶体管级的蒙特卡洛(MC)技术,该技术使最终的晶体管级时序验证切实可行。 MC方法被用作评估其他时序产量估算技术准确性的黄金参考。但是,通常认为它不能在实践中使用,因为它需要太多昂贵的晶体管级仿真。我们提出了一种新颖的方法来构造用于时序成品率的改进的MC估计器,该估计器提供与标准MC相同的精度,但所需的晶体管级仿真次数却少得多。这种改进的估算器基于方差减少技术,重要性采样和廉价但近似的门延迟模型的独特组合。我们目前的结果表明,改进后的产量估算器可以达到与标准MC相同的精度,而成本却降低了几个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号