首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems
【24h】

QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems

机译:QLMOR:使用非线性系统的二次线性表示的基于投影的非线性模型降阶方法

获取原文
获取原文并翻译 | 示例

摘要

We present a projection-based nonlinear model order reduction method, named model order reduction via quadratic-linear systems (QLMOR). QLMOR employs two novel ideas: 1) we show that nonlinear ordinary differential equations, and more generally differential-algebraic equations (DAEs) with many commonly encountered nonlinear kernels can be re-written equivalently in a special representation, quadratic-linear differential algebraic equations (QLDAEs), and 2) we perform a Volterra analysis to derive the Volterra kernels, and we adapt the moment-matching reduction technique of nonlinear model order reduction method (NORM) to reduce these QLDAEs into QLDAEs of much smaller size. Because of the generality of the QLDAE representation, QLMOR has significantly broader applicability than Taylor-expansion-based methods since there is no approximation involved in the transformation from original DAEs to QLDAEs. Because the reduced model has only quadratic nonlinearities, its computational complexity is less than that of similar prior methods. In addition, QLMOR, unlike NORM, totally avoids explicit moment calculations, hence it has improved numerical stability properties as well. We compare QLMOR against prior methods on a circuit and a biochemical reaction-like system, and demonstrate that QLMOR-reduced models retain accuracy over a significantly wider range of excitation than Taylor-expansion-based methods . QLMOR, therefore, demonstrates that Volterra-kernel-based nonlinear MOR techniques can in fact have far broader applicability than previously suspected,-n-n possibly being competitive with trajectory-based methods (e.g., trajectory piece-wise linear reduced order modeling ) and nonlinear-projection-based methods (e.g., maniMOR ).
机译:我们提出了一种基于投影的非线性模型降阶方法,即通过二次线性系统(QLMOR)进行模型降阶。 QLMOR采用了两个新颖的思想:1)我们证明,非线性常微分方程,以及更常见的具有许多常见非线性核的微分代数方程(DAE)可以用特殊表示形式二次线性微分代数方程等效地重写( QLDAE)和2)我们执行Volterra分析以得出Volterra核,并采用非线性模型阶数减少方法(NORM)的矩匹配减少技术将这些QLDAE减少为尺寸更小的QLDAE。由于QLDAE表示法的普遍性,QLMOR具有比基于泰勒展开法的方法更广泛的适用性,因为从原始DAE到QLDAE的转换不涉及任何近似值。由于简化模型仅具有二次非线性,因此其计算复杂度低于类似的现有方法。另外,与NORM不同,QLMOR完全避免了显式矩计算,因此它还具有改进的数值稳定性。我们将QLMOR与电路和生化反应样系统上的现有方法进行比较,并证明与基于泰勒展开法的方法相比,QLMOR简化的模型在更大范围的激励范围内仍保持精度。因此,QLMOR证明,基于Volterra-kernel的非线性MOR技术实际上可以比以前怀疑的具有更广泛的适用性,-nn可能与基于轨迹的方法(例如,轨迹分段线性降阶建模)和非线性-基于投影的方法(例如maniMOR)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号