首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Intelligent Hotspot Prediction for Network-on-Chip-Based Multicore Systems
【24h】

Intelligent Hotspot Prediction for Network-on-Chip-Based Multicore Systems

机译:基于片上网络的多核系统的智能热点预测

获取原文
获取原文并翻译 | 示例

摘要

Hotspots are network-on-chip (NoC) routers or modules in multicore systems which occasionally receive packetized data from other networked element producers at a rate higher than they can consume it. This adverse phenomenon may greatly reduce the performance of NoCs, especially when wormhole flow-control is employed, as backpressure can cause the buffers of neighboring routers to quickly fill-up leading to a spatial spread in congestion. This can cause the network to saturate prematurely where in the worst scenario the NoC may be rendered unrecoverable. Thus, a hotspot prevention mechanism can be greatly beneficial, as it can potentially enable the interconnection system to adjust its behavior and prevent the rise of potential hotspots, subsequently sustaining NoC performance. The inherent unevenness of traffic patterns in an NoC-based general-purpose multicore system such as a chip multiprocessor, due to the diverse and unpredictable access patterns of applications, produces unexpected hotspots whose appearance cannot be known a priori, as application demands are not predetermined, making hotspot prediction and subsequently prevention difficult. In this paper, we present an artificial neural network-based (ANN) hotspot prediction mechanism that can be potentially used in tandem with a hotspot avoidance or congestion-control mechanism to handle unforeseen hotspot formations efficiently. The ANN uses online statistical data to dynamically monitor the interconnect fabric, and reactively predicts the location of an about to-be-formed hotspot(s), allowing enough time for the multicore system to react to these potential hotspots. Evaluation results indicate that a relatively lightweight ANN-based predictor can forecast hotspot formation(s) with an accuracy ranging from 65% to 92%.
机译:热点是多核系统中的片上网络(NoC)路由器或模块,有时会以高于其消耗能力的速率从其他网络元素生产者那里接收打包数据。这种不利现象可能会大大降低NoC的性能,尤其是在采用虫孔流量控制时,因为背压会导致相邻路由器的缓冲区快速填满,从而导致拥塞的空间扩散。这可能导致网络过早饱和,在最坏的情况下,NoC可能会变得不可恢复。因此,防止热点机制可能会非常有益,因为它可以使互连系统潜在地调整其行为并防止潜在热点的上升,从而保持NoC性能。基于NoC的通用多核系统(如芯片多处理器)中流量模式的固有不均匀性,由于应用程序的多样化和不可预测的访问,会导致意外出现热点,其出现原因无法事先确定,因为应用程序需求未预先确定,使热点预测和随后的预防变得困难。在本文中,我们提出了一种基于人工神经网络(ANN)的热点预测机制,该机制可以与避免热点或拥塞控制机制结合使用,从而有效地处理不可预见的热点形成。 ANN使用在线统计数据来动态监视互连结构,并以反应方式预测即将形成的热点的位置,从而为多核系统留出足够的时间对这些潜在的热点做出反应。评估结果表明,相对轻量级的基于ANN的预测器可以预测热点形成的准确性,范围从65%到92%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号