首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Structural Characterization and Efficient Implementation Techniques for $A$-Stable High-Order Integration Methods
【24h】

Structural Characterization and Efficient Implementation Techniques for $A$-Stable High-Order Integration Methods

机译:$ A $-稳定高阶积分方法的结构表征和高效实现技术

获取原文
获取原文并翻译 | 示例

摘要

This paper presents structural characterization and performance enhancement strategies for the recently proposed $A$-stable and $L$-stable high-order integration methods based on the Obreshkov formula. It is demonstrated that although the Jacobian matrix in these methods has a bigger size than the Jacobian matrix in classical low-order methods, it enjoys a special structure that can be used to develop efficient factorization techniques. In addition, the paper proposes a method to reduce the number of Newton–Raphson iterations needed to converge in the large Jacobian domain.
机译:本文介绍了基于Obreshkov公式的最近提出的$ A $稳定和$ L $稳定高阶积分方法的结构表征和性能增强策略。结果表明,尽管这些方法中的雅可比矩阵的大小比经典低阶方法中的雅可比矩阵大,但它具有可用于开发有效因式分解技术的特殊结构。此外,本文提出了一种减少在大Jacobian域中收敛所需的Newton-Raphson迭代次数的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号