首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Accurate Predictions of Process-Execution Time and Process Status Based on Support-Vector Regression for Enterprise Information Systems
【24h】

Accurate Predictions of Process-Execution Time and Process Status Based on Support-Vector Regression for Enterprise Information Systems

机译:基于支持向量回归的企业信息系统过程执行时间和过程状态的准确预测

获取原文
获取原文并翻译 | 示例

摘要

Accurate predictions of both process-execution time and process status are crucial for the development of an intelligent enterprise information system (EIS). We have developed new automated learning-based process-execution time-prediction and process status-prediction methods that can be embedded into an EIS. Process-execution time prediction is a regression problem and state-of-the-art (baseline) time-prediction methods use a machine-learning regression model. Process status prediction is a binary classification problem in which a class labeled “completed” or “in-progress” is assigned to a process with respect to an arbitrary predictive horizon (i.e., the future time given by the method user). The methods proposed in this paper integrate statistical methods with support-vector regression. Comparison results obtained from the real data of a digital-print enterprise show that the proposed time-prediction method reduces both the relative mean error and the root-mean-squared error of the regression model. Furthermore, the proposed status-prediction method not only achieves higher classification accuracy than state-of-the-art methods, it also estimates the probability of the predicted status. In addition, algorithm development and training phases of the proposed methods do not rely on any arbitrary predictive horizon. Therefore, a single time-prediction model as proposed is sufficient for status prediction as opposed to a baseline status-prediction method that requires classification models for all potential predictive horizons.
机译:流程执行时间和流程状态的准确预测对于开发智能企业信息系统(EIS)至关重要。我们已经开发了新的基于自动化学习的过程执行时间预测和过程状态预测方法,这些方法可以嵌入到EIS中。流程执行时间预测是一个回归问题,而最新的(基准)时间预测方法则使用机器学习回归模型。过程状态预测是一个二进制分类问题,其中针对任意预测范围(即方法用户指定的未来时间),将标记为“完成”或“进行中”的类分配给过程。本文提出的方法将统计方法与支持向量回归相结合。从一家数字印刷企业的真实数据获得的比较结果表明,所提出的时间预测方法减少了回归模型的相对平均误差和均方根误差。此外,所提出的状态预测方法不仅比现有技术具有更高的分类精度,而且还估计了预测状态的可能性。另外,所提出方法的算法开发和训练阶段不依赖于任何任意的预测范围。因此,所提出的单个时间预测模型足以进行状态预测,而基线状态预测方法则需要针对所有潜在预测范围的分类模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号