首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Machine-Learning-Based Hotspot Detection Using Topological Classification and Critical Feature Extraction
【24h】

Machine-Learning-Based Hotspot Detection Using Topological Classification and Critical Feature Extraction

机译:基于机器学习的热点检测,使用拓扑分类和关键特征提取

获取原文
获取原文并翻译 | 示例

摘要

Because of the widening sub-wavelength lithography gap in advanced fabrication technology, lithography hotspot detection has become an essential task in design for manufacturability. Unlike current state-of-the-art works, which unite pattern matching and machine-learning engines, we fully exploit the strengths of machine learning using novel techniques. By combing topological classification and critical feature extraction, our hotspot detection framework achieves very high accuracy. Furthermore, to speed-up the evaluation, we verify only possible layout clips instead of full-layout scanning. We utilize feedback learning and present redundant clip removal to reduce the false alarm. Experimental results show that the proposed framework is very accurate and demonstrates a rapid training convergence. Moreover, our framework outperforms the 2012 CAD contest at International Conference on Computer-Aided Design (ICCAD) winner on accuracy and false alarm.
机译:由于先进制造技术中亚波长光刻间隙的不断扩大,光刻热点检测已成为可制造性设计中必不可少的任务。与将模式匹配和机器学习引擎结合在一起的最新技术不同,我们使用新颖的技术充分利用了机器学习的优势。通过结合拓扑分类和关键特征提取,我们的热点检测框架实现了非常高的准确性。此外,为了加快评估速度,我们仅验证可能的布局片段,而不是全布局扫描。我们利用反馈学习,并提出了多余的剪辑删除,以减少错误警报。实验结果表明,所提出的框架是非常准确的,并且证明了快速的训练收敛性。此外,我们的框架在准确性和错误警报方面优于2012年国际计算机辅助设计大会(ICCAD)获奖者CAD竞赛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号