首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >A General Framework for Hardware Trojan Detection in Digital Circuits by Statistical Learning Algorithms
【24h】

A General Framework for Hardware Trojan Detection in Digital Circuits by Statistical Learning Algorithms

机译:统计学习算法在数字电路中检测硬件木马的通用框架

获取原文
获取原文并翻译 | 示例

摘要

The continuous globalization of the semiconductor industry has significantly raised the vulnerability of chips under hardware Trojan (HT) attacks. It is extremely challenging to detect HTs in fabricated chips due to the existence of process variations (PVs), since PVs may cause larger impacts than HTs. In this paper, we propose a novel framework for HT detection in digital integrated circuits. The goal of this paper is to detect HTs inserted during fabrication. The HT detection problem is formulated as an under-determined linear system by a sparse gate profiling technique, and the existence of HTs is mapped to the sparse solution of the linear system. A Bayesian inference-based calibration technique is proposed to recover PVs for each chip for the sparse gate profiling technique. A batch of under-determined linear systems are solved together by the well-studied simultaneous orthogonal matching pursuit algorithm to get their common sparse solution. Experimental results show that even under big measurement errors, the proposed framework gets quite high HT detection rates with low measurement cost.
机译:半导体行业的持续全球化极大地提高了遭受硬件Trojan(HT)攻击的芯片的脆弱性。由于工艺变化(PV)的存在,在制造的芯片中检测HT极具挑战性,因为PV可能比HT造成更大的影响。在本文中,我们提出了一种用于数字集成电路中HT检测的新颖框架。本文的目的是检测在制造过程中插入的HT。通过稀疏门剖析技术将HT检测问题公式化为欠定线性系统,并将HT的存在映射到线性系统的稀疏解。提出了一种基于贝叶斯推理的校准技术,以针对稀疏门剖析技术为每个芯片恢复PV。精心研究的同时正交匹配追踪算法将一批欠定的线性系统一起求解,得到它们的公共稀疏解。实验结果表明,即使在较大的测量误差下,该框架也能以较低的测量成本获得较高的HT检测率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号