首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >2Deep: Enhancing Side-Channel Attacks on Lattice-Based Key-Exchange via 2-D Deep Learning
【24h】

2Deep: Enhancing Side-Channel Attacks on Lattice-Based Key-Exchange via 2-D Deep Learning

机译:2Deep:通过2-D深度学习增强基于格子的密钥交换的侧通道攻击

获取原文
获取原文并翻译 | 示例

摘要

Advancements in quantum computing present a security threat to classical cryptography algorithms. Lattice-based key exchange protocols show strong promise due to their resistance to theoretical quantum-cryptanalysis and low implementation overhead. By contrast, their physical implementations have shown vulnerability against side-channel attacks (SCAs) even with a single power measurement. The state-of-the-art SCAs are, however, limited to simple, sequentialized executions of post-quantum key-exchange (PQKE) protocols, leaving the vulnerability of complex, parallelized architectures unknown. This article proposes 2Deep-a deep-learning (DL)-based SCA-targeting parallelized implementations of PQKE protocols, namely, Frodo and NewHope with data augmentation techniques. Specifically, we explore approaches that convert 1-D time-series power measurement data into 2-D images to formulate SCA an image recognition task. The results show our attack's superiority over conventional techniques including horizontal differential power analysis (DPA), template attacks (TAs), and straightforward DL approaches. We demonstrate improvements up to 1.5x to recover a 100% success rate compared to DL with 1-D input data while using fewer data. We furthermore show that machine learning improves the results up to 1.25x compared to TAs. Furthermore, we perform cross-device attacks that obtain profiles from a single device, which has never been explored. Our 2-D approach is especially favored in this setting, improving the success rate of attacking Frodo from 20% to 99% compared to the 1-D approach. Our work thus urges countermeasures even on parallel architectures and single-trace attacks.
机译:量子计算的进步向古典密码算法呈现安全威胁。基于格子的关键交换协议由于它们对理论量子密码分析和低实现开销的抵抗力而产生了强烈的承诺。相比之下,即使使用单功率测量,它们的物理实现也会对侧信道攻击(SCAS)的漏洞显示出来。然而,最先进的SCAS限于Quantum键交换(PQKE)协议的简单,顺序执行,留下复杂,并行化架构未知的漏洞。本文提出了2Deep - 一种深度学习(DL) - 基于PQKE协议,即Frodo和Newhope的PQKE协议的并行实现,以及具有数据增强技术的SCA。具体地,我们探索将1-D时间序列功率测量数据转换为2-D图像的方法以制定SCA图像识别任务。结果表明我们对传统技术的攻击优势,包括水平差分功率分析(DPA),模板攻击(TAS)和直接的DL方法。我们展示了高达1.5倍的改进,以恢复100%的成功率与使用较少数据的DL相比,在使用较少的数据时使用1-D输入数据。我们还表明,与TA相比,机器学习改善了最高1.25倍的结果。此外,我们执行从一个设备获取配置文件的跨设备攻击,该设备从未探索过。与1-D方法相比,我们的二维方法在此设置中特别赞成,从20%到99%提高攻击费用的成功率。因此,我们的工作甚至敦促对策即使在并行架构和单程攻击中也是如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号