首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >MacLeR: Machine Learning-Based Runtime Hardware Trojan Detection in Resource-Constrained IoT Edge Devices
【24h】

MacLeR: Machine Learning-Based Runtime Hardware Trojan Detection in Resource-Constrained IoT Edge Devices

机译:Macler:基于机器学习的运行时硬件Trojan检测在资源受限的IOT边缘设备中

获取原文
获取原文并翻译 | 示例

摘要

Traditional learning-based approaches for runtime hardware Trojan (HT) detection require complex and expensive on-chip data acquisition frameworks, and thus incur high area and power overhead. To address these challenges, we propose to leverage the power correlation between the executing instructions of a microprocessor to establish a machine learning (ML)-based runtime HT detection framework, called MacLeR. To reduce the overhead of data acquisition, we propose a single power-port current acquisition block using current sensors in time-division multiplexing, which increases accuracy while incurring reduced area overhead. We have implemented a practical solution by analyzing multiple HT benchmarks inserted in the RTL of a system-on-chip (SoC) consisting of four LEON3 processors integrated with other IPs, such as vga_lcd, RSA, AES, Ethernet, and memory controllers. Our experimental results show that compared to state-of-the-art HT detection techniques, MacLeR achieves 10% better HT detection accuracy (i.e., 96.256%) while incurring a 7x reduction in area and power overhead (i.e., 0.025% of the area of the SoC and < 0.07% of the power of the SoC). In addition, we also analyze the impact of process variation (PV) and aging on the extracted power profiles and the HT detection accuracy of MacLeR. Our analysis shows that variations in fine-grained power profiles due to the HTs are significantly higher compared to the variations in fine-grained power profiles caused by the PVs and aging effects. Moreover, our analysis demonstrates that on average, the HT detection accuracy drops in MacLeR is less than 1% and 9% when considering only PV and PV with worst case aging, respectively, which is similar to 10x less than in the case of the state-of-the-art ML-based HT detection technique.
机译:运行时硬件特洛伊木马(HT)检测的传统基于学习的方法需要复杂和昂贵的片上数据采集框架,从而产生高区域和电源开销。为了解决这些挑战,我们建议利用微处理器的执行指令之间的电力相关性,以建立用于基于机器学习(ML)的运行时HT检测框架,称为Macler。为了减少数据采集的开销,我们在时分复用中使用电流传感器提出单个电源端口电流采集块,这增加了精度,同时导致降低的区域开销。通过分析插入的多个HT基准(SOC)的RTL中的多个HT基准,我们已经实现了实用的解决方案,该解决方案由与其他IPS集成的四个LEON3处理器组成,例如VGA_LCD,RSA,AES,以太网和内存控制器。我们的实验结果表明,与最先进的HT检测技术相比,Macler达到了更好的HT检测精度(即96.256%),同时在面积和电源开销中产生7倍,(即,该区域的0.025% SOC和<0.07%的SOC的功率)。此外,我们还分析了过程变化(PV)和老化对提取的电力分布的影响和Macler的HT检测精度。我们的分析表明,与由PVS和老化效果引起的细粒电力分布的变化相比,由于HTS引起的细粒功率分布的变化显着高。此外,我们的分析表明,当仅考虑具有最坏情况老龄化的PV和PV时,Macler中的HT检测精度下降小于1%和9%,这与比国家的情况相似的10倍-OF-基于锰的HT检测技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号