首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Analyzing Deep Learning for Time-Series Data Through Adversarial Lens in Mobile and IoT Applications
【24h】

Analyzing Deep Learning for Time-Series Data Through Adversarial Lens in Mobile and IoT Applications

机译:通过移动和IOT应用中的对抗镜头对时间序列数据进行深度学习

获取原文
获取原文并翻译 | 示例

摘要

Predictive analytics using the time-series data collected from various types of sensors is a fundamental task that enables diverse mobile and Internet of Things applications including smart health. Deep-learning-based solutions are increasingly employed to solve such tasks because of their ability to directly process raw sensor data to achieve high accuracy as opposed to using human-engineered features. However, there are no principled studies on analyzing deep models for multivariate time-series data in adversarial settings. In this article, we propose a novel framework referred as a multivariate time-series adversarial lens (MTS-AdLens) to analyze deep models for wearable and mobile sensing systems through the adversarial lens in a realistic setting. We make three main contributions toward this goal. First, we introduce highly effective black-box attacks that expose significant vulnerabilities of deep models for multivariate time-series input space. Specifically, we show that deep models are vulnerable to attacks on limited channels. Second, inspired by our vulnerability analysis, we propose a novel technique to improve the robustness of the model. Third, we perform comprehensive experiments on data collected from real tasks to validate all our claims. Our results show the effectiveness of MTS-AdLens in identifying the vulnerabilities of deep models and in improving their robustness to realistic attacks.
机译:使用从各种类型的传感器收集的时间序列数据的预测分析是一种基本任务,可以实现不同的移动和内联网应用程序,包括智能健康。基于深度学习的解决方案越来越多地用于解决这些任务,因为它们能够直接处理原始传感器数据以实现高精度,而不是使用人工工程特征。然而,在对抗环境中分析多变量时间序列数据的深层模型没有原则研究。在本文中,我们提出了一种新颖的框架,称为多元时间序列对冲镜片(MTS-Adlens),以通过在现实环境中穿过对抗镜头来分析可穿戴和移动感测系统的深层模型。我们对这一目标进行了三项主要贡献。首先,我们介绍了高效的黑匣子攻击,为多变量时间序列输入空间揭示了深度模型的显着漏洞。具体来说,我们表明深层模型容易受到有限渠道的攻击。其次,灵感来自我们的漏洞分析,我们提出了一种提高模型稳健性的新技术。第三,我们对从真实任务收集的数据进行全面的实验,以验证我们所有的索赔。我们的结果表明了MTS-Adlens在识别深层模型的脆弱性以及改善其对现实攻击的鲁布利方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号