首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Efficient Rare Failure Analysis Over Multiple Corners via Correlated Bayesian Inference
【24h】

Efficient Rare Failure Analysis Over Multiple Corners via Correlated Bayesian Inference

机译:通过相关的贝叶斯推论在多个角度上高效的罕见失败分析

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose an efficient correlated Bayesian inference (CBI) method to estimate the system-level failure rates for large-scale circuit systems over multiple process corners. The key idea is to encode the correlations of circuit performances among the different corners into the prior distributions of several carefully defined failure events. The hyper-parameters of these distributions can be learned from a few simulation samples via Bayesian inference and, next, the system-level failure rates over different corners can be simultaneously estimated by taking into account these prior distributions. An iteratively constrained inference method is further developed to guarantee the numerical stability of the proposed method and legalize all estimated failure rates. The numerical experiments demonstrate that compared to the state-of-the-art algorithm, the proposed method can achieve around 10x runtime reduction without surrendering any accuracy.
机译:在本文中,我们提出了一个有效相关的贝叶斯推理(CBI)方法来估计多个过程角落的大型电路系统的系统级故障率。关键思想是将不同角落之间的电路性能的相关性与几个仔细定义的故障事件的先前分布中编码。这些分布的超参数可以通过贝叶斯推断从少数仿真样本中学到,接下来,通过考虑这些先前的分布,可以同时估计不同角上的系统级故障率。进一步开发了一种迭代约束的推断方法,以保证所提出的方法的数值稳定性并使所有估计的失败率合法化。数值实验表明,与最先进的算法相比,所提出的方法可以实现约10倍的运行时间,而不会投降任何准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号