首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >MemFlow: Memory-Driven Data Scheduling With Datapath Co-Design in Accelerators for Large-Scale Inference Applications
【24h】

MemFlow: Memory-Driven Data Scheduling With Datapath Co-Design in Accelerators for Large-Scale Inference Applications

机译:MEMFLOW:用于大型推理应用的加速器中的数据路径共同设计内存驱动数据调度

获取原文
获取原文并翻译 | 示例

摘要

The increasing importance of inference algorithms, such as neural networks (NNs), principle component analysis (PCA), and singular value decomposition (SVD), etc., has led to the emergence of hardware accelerators to address power-performance tradeoffs in their implementation. Their large data sets make DRAM access the bottleneck for power and performance. Private SRAM scratch-pad memory is used to mitigate the DRAM access penalty but it is a limited resource in size and bandwidth. Thus, accelerator design is not just about computation, but also how data flow is scheduled across the memory hierarchy, including DRAM, scratch-pad SRAM, and datapath registers. Current accelerator design tools automate the generation of customized datapaths to improve performance, but have limited support for reducing DRAM/SRAM accesses during the computation. In this paper, we propose a memory-driven accelerator design methodology for large-scale inference applications, to maximize data access in the datapath and SRAM. We demonstrate its efficacy using several key kernels from large-scale inference applications.
机译:推理算法的重要性越来越重要,例如神经网络(NNS),原理分量分析(PCA)和奇异值分解(SVD)等导致了硬件加速器的出现,以解决其实现中的功率性能权衡。他们的大数据集使DRAM访问电源和性能的瓶颈。私有SRAM Scratch-Pad内存用于缓解DRAM访问损失,但它是大小和带宽的有限资源。因此,加速器设计不仅仅是关于计算,而且还如何在存储器层级中调度数据流,包括DRAM,Scratch-Pad SRAM和DataPath寄存器。当前的加速器设计工具自动生成定制的数据路径,以提高性能,但对计算期间的DRAM / SRAM访问有限。在本文中,我们提出了一种用于大规模推理应用的内存驱动的加速器设计方法,以最大化DataPath和SRAM中的数据访问。我们使用来自大型推理应用的几个关键内核来展示其功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号