首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Spin-Orbit Torque Devices for Hardware Security: From Deterministic to Probabilistic Regime
【24h】

Spin-Orbit Torque Devices for Hardware Security: From Deterministic to Probabilistic Regime

机译:用于硬件安全的旋转轨道扭矩装置:从确定性到概率制度

获取原文
获取原文并翻译 | 示例

摘要

Protecting intellectual property (IP) has become a serious challenge for chip designers. Most countermeasures are tailored for CMOS integration and tend to incur excessive overheads, resulting from additional circuitry or device-level modifications. On the other hand, power density is a critical concern for sub-50 nm nodes, necessitating alternate design concepts. Although initially tailored for error-tolerant applications, imprecise computing has gained traction as a general-purpose design technique. Emerging devices are currently being explored to implement ultralow-power circuits for inexact computing applications. In this paper, we quantify the security threats of imprecise computing using emerging devices. More specifically, we leverage the innate polymorphism and tunable stochastic behavior of spin-orbit torque (SOT) devices, particularly, the giant spin-Hall effect (GSHE) switch. We enable IP protection (by means of logic locking and camouflaging) simultaneously for deterministic and probabilistic computing, directly at the GSHE device level. We conduct a comprehensive security analysis using state-of-the-art Boolean satisfiability (SAT) attacks; this paper demonstrates the superior resilience of our GSHE primitive when tailored for deterministic computing. We also demonstrate how probabilistic computing can thwart most, if not all, existing SAT attacks. Based on this finding, we propose an attack scheme called probabilistic SAT (PSAT) which can bypass the defense offered by logic locking and camouflaging for imprecise computing schemes. Further, we illustrate how careful application of our GSHE primitive can remain secure even on the application of the PSAT attack. Finally, we also discuss side-channel attacks and invasive monitoring, which are arguably even more concerning threats than SAT attacks.
机译:保护知识产权(IP)已成为芯片设计师的严峻挑战。大多数对策都是针对CMOS集成量身定制的,并且往往会引起过度的开销,由额外的电路或设备级修改产生。另一方面,功率密度是Sub-50 NM节点的关键问题,需要替代设计概念。虽然最初针对耐堵塞应用程序定制,但是Impecise Computing已经获得了牵引力作为通用设计技术。目前正在探索新兴设备以实现针对不精确计算应用的超级电源电路。在本文中,我们使用新兴设备量化了不精确计算的安全威胁。更具体地,我们利用旋转轨道扭矩(SOT)器件的先天多态性和可调随机行为,特别是巨型旋转厅效应(GSHE)开关。我们可以同时启用IP保护(通过逻辑锁定和伪装),以便直接在GSHE设备级别进行确定性和概率计算。我们使用最先进的布尔可满足(SAT)攻击进行全面的安全分析;本文展示了针对确定性计算量身定制时我们的GSHE原始的优越复原力。我们还展示了概率计算如何突破最多,如果不是全部,现有的SAT攻击。基于这一发现,我们提出了一种称为概率SAT(PSAT)的攻击方案,可以绕过逻辑锁定和伪装为不精确的计算方案提供的防御。此外,我们说明了我们的GSHE原始的仔细应用即使在PSAT攻击的应用中也可以保持安全。最后,我们还讨论了侧渠攻击和侵入性监测,这些攻击性监测可以更多地有关SAT攻击的威胁。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号