首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Formal Analysis of Galois Field Arithmetic Circuits-Parallel Verification and Reverse Engineering
【24h】

Formal Analysis of Galois Field Arithmetic Circuits-Parallel Verification and Reverse Engineering

机译:Galois现场算术电路的形式分析-并行验证和逆向工程

获取原文
获取原文并翻译 | 示例

摘要

Galois field (GF) arithmetic circuits find numerous applications in communications, signal processing, and security engineering. Formal verification techniques of GF circuits are scarce and limited to circuits with known bit positions of the primary inputs and outputs. They also require knowledge of the irreducible polynomial P(x), which affects final hardware implementation. This paper presents a computer algebra technique that performs verification and reverse engineering of GF(2(m)) multipliers directly from the gate-level implementation. The approach is based on extracting a unique irreducible polynomial in a parallel fashion and proceeds in three steps: 1) determine the bit position of the output bits; 2) determine the bit position of the input bits; and 3) extract the irreducible polynomial used in the design. We demonstrate that this method is able to reverse engineer GF(2(m)) multipliers in m threads. Experiments performed on synthesized Mastrovito and Montgomery multipliers with different P(x), including NIST-recommended polynomials, demonstrate high efficiency of the proposed method.
机译:Galois现场(GF)算术电路在通信,信号处理和安全工程中有许多应用。 GF电路的形式验证技术很少,并且仅限于主要输入和输出的位位置已知的电路。他们还需要了解不可约多项式P(x),这会影响最终的硬件实现。本文提出了一种计算机代数技术,该技术可以直接从门级实现中执行GF(2(m))乘法器的验证和逆向工程。该方法基于以并行方式提取唯一不可约多项式,并分三步进行:1)确定输出位的位位置; 2)确定输入位的位位置; 3)提取设计中使用的不可约多项式。我们证明了该方法能够对m个线程中的GF(2(m))乘数进行逆向工程。对合成的具有不同P(x)的Mastrovito和Montgomery乘法器(包括NIST推荐的多项式)进行的实验证明了该方法的高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号