首页> 外文学位 >Scalable formal verification of finite field arithmetic circuits using computer algebra techniques.
【24h】

Scalable formal verification of finite field arithmetic circuits using computer algebra techniques.

机译:使用计算机代数技术的有限域算术电路的可扩展形式验证。

获取原文
获取原文并翻译 | 示例

摘要

With the spread of internet and mobile devices, transferring information safely and securely has become more important than ever. Finite fields have widespread applications in such domains, such as in cryptography, error correction codes, among many others. In most finite field applications, the field size - and therefore the bit-width of the operands - can be very large. The high complexity of arithmetic operations over such large fields requires circuits to be (semi-) custom designed. This raises the potential for errors/bugs in the implementation, which can be maliciously exploited and can compromise the security of such systems. Formal verification of finite field arithmetic circuits has therefore become an imperative.;This dissertation targets the problem of formal verification of hardware implementations of combinational arithmetic circuits over finite fields of the type F2k . Two specific problems are addressed: i) verifying the correctness of a custom-designed arithmetic circuit implementation against a given word-level polynomial specification over F2k ; and ii) gate-level equivalence checking of two different arithmetic circuit implementations.;This dissertation proposes polynomial abstractions over finite fields to model and represent the circuit constraints. Subsequently, decision procedures based on modern computer algebra techniques - notably, Grobner bases-related theory and technology - are engineered to solve the verification problem efficiently. The arithmetic circuit is modeled as a polynomial system in the ring F2k [x1,x2, ···, xd], and computer algebra-based results (Hilbert's Nullstellensatz) over finite fields are exploited for verification.;Using our approach, experiments are performed on a variety of custom-designed finite field arithmetic benchmark circuits. The results are also compared against contemporary methods, based on SAT and SMT solvers, BDDs, and AIG-based methods. Our tools can verify the correctness of, and detect bugs in, up to 163-bit circuits in F2163 whereas contemporary approaches are infeasible beyond 48-bit circuits.
机译:随着Internet和移动设备的普及,安全地传输信息变得比以往任何时候都更为重要。有限领域在诸如加密,纠错码等许多领域中具有广泛的应用。在大多数有限字段应用程序中,字段大小-因此操作数的位宽-可能非常大。在如此大的范围内,算术运算的高度复杂性要求对电路进行(半)定制设计。这增加了实现中错误/错误的可能性,这些错误/错误可能被恶意利用并危及此类系统的安全性。因此,有限域算术电路的形式验证已成为当务之急。;本论文针对F2k类型有限域上组合算术电路的硬件实现形式验证的问题。解决了两个具体问题:i)针对F2k上给定的字级多项式规范,验证定制设计的算术电路实现的正确性;两种不同的算术电路实现的门级等效性检查。本文提出了有限域上的多项式抽象来建模和表示电路约束。随后,设计了基于现代计算机代数技术的决策程序,尤其是与Grobner bases相关的理论和技术,以有效解决验证问题。将算术电路建模为F2k环[x1,x2,···,xd]中的多项式系统,并利用有限域上基于计算机代数的结果(Hilbert's Nullstellensatz)进行验证。在各种定制设计的有限域算术基准电路上执行。还将结果与基于SAT和SMT求解器,BDD和基于AIG的方法的现代方法进行比较。我们的工具可以验证F2163中最多163位电路的正确性并检测其中的错误,而现代方法无法超越48位电路。

著录项

  • 作者

    Lv, Jinpeng.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号