首页> 外文期刊>IEEE Transactions on Cognitive and Developmental Systems >Performance Comparison of Gesture Recognition System Based on Different Classifiers
【24h】

Performance Comparison of Gesture Recognition System Based on Different Classifiers

机译:基于不同分类器的手势识别系统性能比较

获取原文
获取原文并翻译 | 示例

摘要

The hand plays a very important role in our daily life, and the amputees suffer a lot from the loss of hands or upper limbs. Hence, assisting devices are desired urgently. Today, the prosthetic hands based on surface electromyography (sEMG) signals can recognize many hand gestures, but some problems still exist. To identify more gestures, some recognition systems require multiple electrodes, which are unable to be applied to the amputees with less residual muscles. Meanwhile, better computing performance is required as the number of electrodes increases, which is difficult to be applied to the real-time embedded systems. In this article, we aim to recognize six hand gestures by using sEMG sensors as little as possible. To realize this goal, we compare the accuracy and processing time of different feature extraction and classification methods offline, and the results indicate that the combination of time-domain features and backpropagation neural network has better performance. In total, nine subjects participated in the offline experiments, and the accuracy is up to 95.46% by employing two sEMG sensors to recognize six hand gestures.
机译:手在日常生活中发挥着非常重要的作用,而令人讨厌从失去手或上肢遭受了很多影响。因此,迫切需要辅助装置。如今,基于表面肌电图(SEMG)信号的假肢可以识别许多手势,但仍然存在一些问题。为了识别更多手势,一些识别系统需要多个电极,其无法用较少的残留肌肉施加到术中。同时,随着电极的数量增加,需要更好的计算性能,这难以应用于实时嵌入式系统。在本文中,我们的目标是通过尽可能少地使用SEMG传感器来识别六个手势。为了实现这一目标,我们将不同的特征提取和分类方法离线的准确性和处理时间进行比较,结果表明,时间域特征和背交神经网络的组合具有更好的性能。总共有9个科目参与了离线实验,通过使用两个SEMG传感器识别六个手势,准确度高达95.46%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号