机译:基于不同分类器的手势识别系统性能比较
Nankai Univ Coll Artificial Intelligence Tianjin 300350 Peoples R China;
Nankai Univ Coll Artificial Intelligence Tianjin 300350 Peoples R China;
Nankai Univ Coll Artificial Intelligence Tianjin 300350 Peoples R China;
Nankai Univ Coll Artificial Intelligence Tianjin 300350 Peoples R China;
Nankai Univ Coll Artificial Intelligence Tianjin 300350 Peoples R China;
Maebashi Inst Technol Dept Syst Life Engn Maebashi Gumma 3710816 Japan;
Univ Electrocommun Dept Mech Engn & Intelligent Syst Chofu Tokyo 1828585 Japan;
Feature extraction; Muscles; Sensors; Electrodes; Gesture recognition; Frequency-domain analysis; Neural networks; Adaptive boosting (AdaBoost); backpropagation neural network (BPNN); frequency-domain analysis; surface electromyography (sEMG); time-domain analysis;
机译:不同背景条件下基于最近邻的手势识别系统中几种预处理方法的性能比较
机译:不同背景条件下基于最近邻的手势识别系统中几种预处理方法的性能比较
机译:不同背景条件下基于最近邻的手势识别系统中几种预处理方法的性能比较
机译:基于朴素贝叶斯分类器的多模式传感器飞跃运动和Myo臂带控制器对印尼手语系统(ISLS)的手势识别
机译:使用分类器集合进行手势识别
机译:使用IR-UWB雷达和基于初始模块的分类器进行手势识别
机译:不同背景条件下基于最近邻的手势识别系统中几种预处理方法的性能比较
机译:基于模型的运动滤波提高手臂姿态识别性能