首页> 外文期刊>IEEE Transactions on Cognitive and Developmental Systems >Ensemble Hierarchical Extreme Learning Machine for Speech Dereverberation
【24h】

Ensemble Hierarchical Extreme Learning Machine for Speech Dereverberation

机译:用于语音DERERATIONATION的合奏分层极端学习机

获取原文
获取原文并翻译 | 示例

摘要

Data-driven deep learning solutions with gradient-based neural architecture, have proven useful in overcoming some limitations of traditional signal processing techniques. However, a large number of reverberant-anechoic training utterance pairs covering as many environmental conditions as possible is required to achieve robust dereverberation performance in unseen testing conditions. In this article, we propose to address the data requirement issue while preserving the advantages of deep neural structures leveraging upon hierarchical extreme learning machines (HELMs), which are not gradient-based neural architectures. In particular, an ensemble HELM learning framework is established to effectively recover anechoic speech from a reverberant one based on spectral mapping. In addition to the ensemble learning framework, we further derive two novel HELM models, namely, highway HELM [HELM(Hwy)] and residual HELM [HELM(Res)], both incorporating low-level features to enrich the information for spectral mapping. We evaluated the proposed ensemble learning framework using simulated and measured impulse responses by employing Texas Instrument and Massachusetts Institute of Technology (TIMIT), Mandarin hearing in noise test (MHINT), and reverberant voice enhancement and recognition benchmark (REVERB) corpora. The experimental results show that the proposed framework outperforms both traditional methods and a recently proposed integrated deep and ensemble learning algorithm in terms of standardized objective and subjective evaluations under matched and mismatched testing conditions for simulated and measured impulse responses.
机译:具有基于梯度的神经结构的数据驱动的深度学习解决方案,证明了克服了传统信号处理技术的一些限制。然而,需要大量的混响 - 安静训练话语对尽可能多的环境条件,以在看不见的测试条件下实现鲁棒的放射性性能。在本文中,我们建议解决数据需求问题,同时保留了利用分层极端学习机(Helms)的深神经结构的优势,这不是基于梯度的神经结构。特别地,建立了集合Helm学习框架,以基于光谱映射有效地从混响彼此恢复化学语音。除了合奏学习框架外,还进一步推出了两种新颖的掌舵模型,即高速公路Helm [Helm(HWY)]和残留的Helm [Helm(RES)],包括低级功能,以丰富光谱映射信息。通过使用德克萨斯乐器和马萨诸塞州技术研究所(Timit),噪音测试(MHINT)和混响语音增强和识别基准(REVERB)GRACES,通过使用模拟和测量的脉冲响应评估了所提出的脉冲禁令响应。实验结果表明,拟议的框架在匹配和错配的测试条件下的标准化目标和主观评估方面占据了传统方法和最近建议的集成深度和集合学习算法,用于模拟和测量脉冲响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号