首页> 外文期刊>IEEE Transactions on Cognitive and Developmental Systems >Four-Dimensional Modeling of fMRI Data via Spatio–Temporal Convolutional Neural Networks (ST-CNNs)
【24h】

Four-Dimensional Modeling of fMRI Data via Spatio–Temporal Convolutional Neural Networks (ST-CNNs)

机译:天空时间卷积神经网络(ST-CNNS)的FMRI数据的四维建模

获取原文
获取原文并翻译 | 示例

摘要

Since the human brain functional mechanism has been enabled for investigation by the functional magnetic resonance imaging (fMRI) technology, simultaneous modeling of both the spatial and temporal patterns of brain functional networks from 4-D fMRI data has been a fundamental but still challenging research topic for neuroimaging and medical image analysis fields. Currently, general linear model (GLM), independent component analysis (ICA), sparse dictionary learning, and recently deep learning models, are major methods for fMRI data analysis in either spatial or temporal domains, but there are few joint spatial-temporal methods proposed, as far as we know. As a result, the 4-D nature of fMRI data has not been effectively investigated due to this methodological gap. The recent success of deep learning applications for functional brain decoding and encoding greatly inspired us in this paper to propose a novel framework called spatio-temporal convolutional neural network (ST-CNN) to extract both spatial and temporal characteristics from targeted networks jointly and automatically identify of functional networks. The identification of default mode network (DMN) from fMRI data was used for evaluation of the proposed framework. Results show that only training the framework on one fMRI data set is sufficiently generalizable to identify the DMN from different data sets of different cognitive tasks and resting state. Further investigation of the results shows that the joint-learning scheme can capture the intrinsic relationship between the spatial and temporal characteristics of DMN and thus it ensures the accurate identification of DMN from independent data sets. The ST-CNN model brings new tools and insights for fMRI analysis in cognitive and clinical neuroscience studies.
机译:由于已经通过功能磁共振成像(FMRI)技术来调查人脑功能机制,因此来自4-D FMRI数据的脑功能网络的空间和时间模式的同时建模一直是一个基本但仍然具有挑战性的研究主题用于神经影像和医学图像分析领域。目前,一般线性模型(GLM),独立分量分析(ICA),稀疏的字典学习和最近深入学习模型,是空间或时间域中的FMRI数据分析的主要方法,但提出了很少的联合空间 - 时间方法, 据我们所知。结果,由于该方法的间隙,FMRI数据的4-D性质尚未有效地研究。近期功能性大脑解码和编码的深度学习应用的成功大大启发了我们本文的新框架,提出了一种名为时空卷积神经网络(ST-CNN)的新颖框架,以共同提取来自目标网络的空间和时间特征,并自动识别功能网络。来自FMRI数据的默认模式网络(DMN)的识别用于评估所提出的框架。结果表明,只有在一个FMRI数据集上训练框架是足够概括的,以识别来自不同数据集的DMN不同的数据集和休息状态。进一步调查结果表明,联合学习方案可以捕获DMN的空间和时间特征之间的内在关系,从而确保了从独立数据集中准确识别DMN。 ST-CNN模型为认知和临床神经科学研究中的FMRI分析带来了新的工具和见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号