首页> 外文期刊>IEEE Transactions on Cognitive and Developmental Systems >Toward Brain-Inspired Learning With the Neuromorphic Snake-Like Robot and the Neurorobotic Platform
【24h】

Toward Brain-Inspired Learning With the Neuromorphic Snake-Like Robot and the Neurorobotic Platform

机译:借助神经形态蛇样机器人和神经机器人平台实现脑启发性学习

获取原文
获取原文并翻译 | 示例

摘要

Neurorobotic mimics the structural and functional principles of living creature systems. Modeling a single system by robotic hardware and software has existed for decades. However, an integrated toolset studying the interaction of all systems has not been demonstrated yet. We present a hybrid neuromorphic computing paradigm to bridge this gap by combining the neurorobotics platform (NRP) with the neuromorphic snake-like robot (NeuroSnake). This paradigm encompasses the virtual models, neuromorphic sensing and computing capabilities, and physical bio-inspired bodies, with which an experimenter can design and execute both in-silico and in-vino robotic experimentation easily. The NRP is a public Web-based platform for easily testing brain models with virtual bodies and environments. The NeuroSnake is a bio-inspired robot equipped with a silica-retina sensor and neuromorphic computer for power-efficiency applications. We illustrate the efficiencies of our paradigm with an easy designing of a visual pursuit experiment in the NRP. We study two automatic behavior learning tasks which are further integrated into a complex task of semi-autonomous pole climbing. The result shows that robots could build new learning rules in a less explicit manner inspired by living creatures. Our method gives an alternative way to efficiently develop complex behavior control of the ro As spiking neural network is a bio-inspired neural network and the NeuroSnake robot is equipped with a spike-based silicon retina camera, the control system can be easily implemented via spiking neurons simulated on neuromorphic hardware, such as SpiNNaker.bot.
机译:神经机器人模仿了生物系统的结构和功能原理。使用机器人硬件和软件为单个系统建模已经存在了数十年。但是,尚未证明研究所有系统相互作用的集成工具集。我们提出了一种混合神经形态计算范例,通过将神经机器人平台(NRP)与神经形态蛇状机器人(NeuroSnake)相结合来弥合这种差距。这种范例涵盖了虚拟模型,神经形态感应和计算功能以及受生物启发的身体,实验者可以使用它们轻松设计和执行计算机内和体外机器人实验。 NRP是一个基于Web的公共平台,可以轻松地通过虚拟身体和环境测试大脑模型。 NeuroSnake是一款受生物启发的机器人,配备了二氧化硅视网膜传感器和神经形态计算机,可实现高能效应用。我们通过在NRP中轻松设计视觉追踪实验来说明我们的范例的效率。我们研究了两个自动行为学习任务,这些任务进一步集成到半自动爬杆的复杂任务中。结果表明,机器人可以以受生物启发的不太明确的方式建立新的学习规则。我们的方法为有效开发ro的复杂行为控制提供了另一种方法,因为尖峰神经网络是受生物启发的神经网络,而NeuroSnake机器人配备了基于尖峰的硅视网膜摄像头,因此可以轻松地通过尖峰实现控制系统在神经形态硬件(例如SpiNNaker.bot)上模拟的神经元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号