首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Coordinated Beamforming for UAV-Aided Millimeter-Wave Communications Using GPML-Based Channel Estimation
【24h】

Coordinated Beamforming for UAV-Aided Millimeter-Wave Communications Using GPML-Based Channel Estimation

机译:基于GPML的信道估计的UAV辅助毫米波通信协调波束形成

获取原文
获取原文并翻译 | 示例

摘要

In the 5th generation (5G) networks, coordinated multiple point (CoMP) is one of key technologies to improve the quality of service (QoS) of edge users. To meet the requirement of growing data rates, millimeter-wave (mmWave) can be employed in the CoMP system. However, the QoS of users may be degraded if line-of-sight (LoS) mmWave channels are not guaranteed. In this article, an unmanned aerial vehicle (UAV)-aided communication scheme is proposed to enhance the QoS of edge users, where the UAV helps a primary base station (BS) and a coordinated BS simultaneously. In the proposed scheme, since the UAV only feeds back the channel state information (CSI) to the primary BS, the CSI obtained at the coordinated BS through a backbone network becomes outdated. In order to overcome the performance loss caused by the CSI feedback delay, a machine learning based channel estimation scheme is studied for the coordinated BS to perform hybrid beamforming. Furthermore, to eliminate the inter-BS interference, a maximize signal to interference-plus-noise ratio (Max-SINR) based beamforming compensation scheme is proposed for the primary BS and UAV. The simulation results show that both the bit error rate (BER) and sum rate performance can be improved by employing the proposed schemes.
机译:在第5代(5G)网络中,协调多点(COMP)是提高边缘用户的服务质量(QoS)的关键技术之一。为了满足日益增长的数据速率的要求,COMP系统可以采用毫米波(MMWAVE)。但是,如果不保证视线(LOS)MMWAVE通道,则用户的QoS可能会降低。在本文中,提出了一种无人驾驶飞行器(UAV) - 提出的通信方案来增强边缘用户的QoS,其中UAV同时帮助主基站(BS)和协调BS。在所提出的方案中,由于UAV仅将信道状态信息(CSI)馈送到主BS,因此通过骨干网络在协调BS处获得的CSI变得过时。为了克服由CSI反馈延迟引起的性能损失,研究了基于机器学习的信道估计方案,用于协调BS进行混合波束形成。此外,为了消除BS间干扰,为主BS和UAV提出了基于基于间的波束形成补偿方案的最大化信号的最大化信号(MAX-SINR)的波束成形补偿方案。仿真结果表明,通过采用所提出的方案,可以提高误码率(BER)和SUM速率性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号