首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Lightweight Deep Learning Based Intelligent Edge Surveillance Techniques
【24h】

Lightweight Deep Learning Based Intelligent Edge Surveillance Techniques

机译:基于轻质深度学习的智能边缘监控技术

获取原文
获取原文并翻译 | 示例

摘要

Decentralized edge computing techniques have been attracted strongly attentions in many applications of intelligent Internet of Things (IIoT). Among these applications, intelligent edge surveillance (INES) methods play a very important role to recognize object feature information automatically from surveillance video by virtue of edge computing together with image processing and computer vision. Traditional centralized surveillance techniques recognize objects at the cost of high latency, high cost and also require high occupied storage. In this paper, we propose a deep learning-based INES technique for a specific IIoT application. First, a depthwise separable convolutional strategy is introduced to build a lightweight deep neural network to reduce its computational cost. Second, we combine edge computing with cloud computing to reduce network traffic. Third, our proposed INES method is applied into the practical construction site for the validation of a specific IIoT application. The detection speed of the proposed INES reaches 16 frames per second in the edge device. After the joint computing of edge and cloud, the detection precision can reach as high as 89%. In addition, the operating cost at the edge device is only one-tenth of that of the centralized server. Experiment results are given to confirm the proposed INES method in terms of both computational cost and detection accuracy.
机译:分散的边缘计算技术被智能互联网(IIOT)的许多应用中受到了强烈关注。在这些应用中,智能边缘监视(ines)方法在通过与图像处理和计算机视觉一起使用边缘计算,从监视视频中自动识别对象特征信息的非常重要的作用。传统的集中监控技术以高延迟,高成本,高成本的成本识别对象,也需要高占用的存储空间。在本文中,我们提出了一种针对特定IIOT应用的深度学习的INES技术。首先,引入了深度可分离的卷积策略,以构建轻量级深度神经网络,以降低其计算成本。其次,我们将边缘计算与云计算相结合,以减少网络流量。第三,我们提出的INES方法应用于实际施工现场,以验证特定的IIOT应用。所提出的INE的检测速度在边缘设备中达到每秒16帧。在边缘和云的联合计算后,检测精度可以高达89%。此外,边缘设备的运营成本仅为集中式服务器的运行成本。给出了实验结果,以确认计算成本和检测准确性方面的提出的INES方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号