首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Distributed Power Control for Large Energy Harvesting Networks: A Multi-Agent Deep Reinforcement Learning Approach
【24h】

Distributed Power Control for Large Energy Harvesting Networks: A Multi-Agent Deep Reinforcement Learning Approach

机译:用于大型能量收集网络的分布式功率控制:多功能深度增强学习方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop a multi-agent reinforcement learning (MARL) framework to obtain online power control policies for a large energy harvesting (EH) multiple access channel, when only causal information about the EH process and wireless channel is available. In the proposed framework, we model the online power control problem as a discrete-time mean-field game (MFG), and analytically show that the MFG has a unique stationary solution. Next, we leverage the fictitious play property of the mean-field games, and the deep reinforcement learning technique to learn the stationary solution of the game, in a completely distributed fashion. We analytically show that the proposed procedure converges to the unique stationary solution of the MFG. This, in turn, ensures that the optimal policies can be learned in a completely distributed fashion. In order to benchmark the performance of the distributed policies, we also develop a deep neural network (DNN) based centralized as well as distributed online power control schemes. Our simulation results show the efficacy of the proposed power control policies. In particular, the DNN based centralized power control policies provide a very good performance for large EH networks for which the design of optimal policies is intractable using the conventional methods such as Markov decision processes. Further, performance of both the distributed policies is close to the throughput achieved by the centralized policies.
机译:在本文中,我们开发了一个多功能钢筋学习(Marl)框架,以获得用于大能收集(eh)多通道的在线电源控制策略,当只有关于EH过程和无线信道的因果信息时,可以使用。在拟议的框架中,我们将在线功率控制问题模拟为离散时间的均值场比赛(MFG),并分析显示MFG具有独特的静止解决方案。接下来,我们利用平均野外游戏的虚构游戏属性,以及以完全分布的方式以完全分布的方式学习游戏的静止解决方案的深度增强学习技术。我们分析表明,所提出的程序会聚到MFG的独特静止解决方案。反过来,这确保了最佳的政策可以以完全分布的方式学习。为了基准分布式政策的性能,我们还开发了基于深度的神经网络(DNN)的集中式以及分布式在线功率控制方案。我们的仿真结果表明了所提出的权力控制政策的功效。特别是,基于DNN的集中功率控制策略为大型EH网络提供了非常好的性能,其中最佳策略的设计使用如Markov决策过程如Markov决策过程的常规方法是棘手的。此外,分布式策略的性能接近集中策略所实现的吞吐量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号