首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Third Eye: Context-Aware Detection for Hidden Terminal Emulation Attacks in Cognitive Radio-Enabled IoT Networks
【24h】

Third Eye: Context-Aware Detection for Hidden Terminal Emulation Attacks in Cognitive Radio-Enabled IoT Networks

机译:第三只眼:关于认知式无线电联通的物联网网络中隐藏终端仿真攻击的背景感知检测

获取原文
获取原文并翻译 | 示例

摘要

Recently, the Internet of Things (IoT) technology has been drawing increasing attention because it has a great potential to positively impact human life in a broad range of applications. Nonetheless, the dense deployment of multiple co-located IoT networks that may follow different wireless protocols will essentially bring new network vulnerabilities. In this paper, we introduce a novel attack scenario in co-located cognitive radio (CR) enabled IoT networks, where a reactive attacker can emulate the radiation pattern of a hidden terminal (the attacker is from a different network) and can interfere with the transmissions from its hidden counterparts, namely the hidden terminal emulation (HTE) attack. As the dense deployment of IoT nodes-from different networks and technologies-will naturally create such hidden terminal scenarios among IoT devices of different networks, it provides the HTE attacker plausible deniability to reactively interfere with its hidden counterparts; hence, the state-of-the-art reactive attack detection techniques are infeasible in this scenario where benign hidden terminals could be flagged as reactive attackers. In this paper, we capture the behavior of a benign hidden terminal and an HTE attacker via parsimonious Markov models and propose a context-aware detection solution using the Markov chain hypothesis testing, namely the Third Eye. Though there has been extensive research on malicious interference detection, to the best of our knowledge, this work is the first that considers hidden terminals as benign interference sources, foresees this unique attack scenario, and leverages the existing carrier sensing technique as a natural and effective way to detect HTE attacks.
机译:最近,物联网(物联网)技术一直在吸引越来越大,因为它具有积极影响人类生活在广泛的应用中的潜力。尽管如此,可以遵循不同无线协议的多个共同定位的物联网网络的密集部署基本上会带来新的网络漏洞。在本文中,我们介绍了共同定位的认知无线电(CR)的新型攻击场景,其中有动机网络可以模拟隐藏终端的辐射模式(攻击者来自不同的网络),并且可以干扰从其隐藏的同行传输,即隐藏的终端仿真(HTE)攻击。由于IOT节点的密集部署 - 来自不同的网络和技术 - 将自然地在不同网络的IOT设备中创建如此隐藏的终端情景,它为HTE攻击者提供了可信赖的可反应其隐藏的对应物;因此,在这种情况下,最先进的反应性攻击检测技术在这种情况下是不可行的,其中良性隐藏终端可以被标记为无功攻击者。在本文中,我们通过Parsimoious Markov模型捕获良性隐藏终端和HTE攻击者的行为,并提出了使用Markov链假设检测的背景感知检测解决方案,即第三只眼睛。虽然对恶意干扰检测有广泛的研究,但据我们所知,这项工作是首先考虑隐藏的终端作为良性干扰源的首先,预见到这种独特的攻击情景,并利用现有的载波传感技术作为自然有效检测HTE攻击的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号