首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Mobility-Aware Content Preference Learning in Decentralized Caching Networks
【24h】

Mobility-Aware Content Preference Learning in Decentralized Caching Networks

机译:分散缓存网络中的移动感知内容首选项学习

获取原文
获取原文并翻译 | 示例

摘要

Due to the drastic increase of mobile traffic, wireless caching is proposed to serve repeated requests for content download. To determine the caching scheme for decentralized caching networks, the content preference learning problem based on mobility prediction is studied. We first formulate preference prediction as a decentralized regularized multi-task learning (DRMTL) problem without considering the mobility of mobile terminals (MTs). The problem is solved by a hybrid Jacobian and Gauss-Seidel proximal multi-block alternating direction method (ADMM) based algorithm, which is proven to conditionally converge to the optimal solution with a rate ${O}$ (1/ ${k}$ ). Then we use the tool of Markov renewal process to predict the moving path and sojourn time for MTs, and integrate the mobility pattern with the DRMTL model by reweighting the training samples and introducing a transfer penalty in the objective. We solve the problem and prove that the developed algorithm has the same convergence property but with different conditions. Through simulation we show the convergence analysis on proposed algorithms. Our real trace driven experiments illustrate that the mobility-aware DRMTL model can provide a more accurate prediction on geography preference than DRMTL model. Besides, the hit ratio achieved by most popular proactive caching (MPC) policy with preference predicted by mobility-aware DRMTL outperforms the MPC with preference from DRMTL and random caching (RC) schemes.
机译:由于移动流量的激烈增加,建议无线缓存为重复的内容下载请求。为了确定分散缓存网络的缓存方案,研究了基于移动预测的内容偏好学习问题。我们首先在不考虑移动终端的移动性(MTS)的流动性,首先将优先考虑预测作为分散的正则化多任务学习(DRMTL)问题。该问题由混合雅可比和高斯-Seidel近端多块交替方向方法(ADMM)基于算法来解决,这被证明是有条件地收敛到最佳解决方案,以$ {o} $(1 / $ {k} $)。然后,我们使用Markov更新过程的工具来预测MTS的移动路径和测定时间,并通过重新重复培训样本并在目标中引入转移罚款来与DRMTL模型集成移动性模式。我们解决了问题,并证明了发达的算法具有相同的收敛性,但条件不同。通过仿真,我们显示了提出算法的收敛性分析。我们的实际跟踪驱动实验说明了移动性感知DRMTL模型可以在地理偏好方面提供比DRMTL模型更准确的预测。此外,最受欢迎的主动缓存(MPC)策略实现的命中率与MPC型DRMTL的优先考虑,优先于DRMTL和随机缓存(RC)方案优先考虑MPC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号