首页> 外文期刊>IEEE Transactions on Circuits and Systems >Fast computation of real discrete Fourier transform for any number of data points
【24h】

Fast computation of real discrete Fourier transform for any number of data points

机译:快速计算任意数量数据点的实数离散傅里叶变换

获取原文
获取原文并翻译 | 示例

摘要

In many applications, it is desirable to have a fast algorithm (RFFT) for the computation of the real discrete Fourier transform (RDFT) for any number of data points N. To achieve this, the two-factor Cooley-Tukey decimation-in-time and decimation-in-frequency RFFT algorithms are first developed and expressed in terms of matrix factorization using Kronecker products. This is generalized to any number of factors with arbitrary radices. Each factor M involves the computation of the size-M RDFT, which is carried out by the best size-M RFFT algorithm available. The RFFT algorithm for the case where M is a prime number is also developed. The RFFT algorithms are more efficient in the number of operations when the factors are arranged in a certain order, unlike the Cooley-Tukey complex FFT algorithms. which have the same number of operations for any order of the factors.
机译:在许多应用中,希望有一种快速算法(RFFT)用于计算任意数量的数据点N的实数离散傅里叶变换(RDFT)。为实现这一点,采用了两因素的Cooley-Tukey抽取法:首先开发了时间和频率抽取RFFT算法,并使用Kronecker产品以矩阵分解的形式表示。这可以概括为具有任意半径的任意数量的因子。每个因子M都涉及大小M RDFT的计算,该计算由可用的最佳大小M RFFT算法执行。还开发了针对M为质数的情况的RFFT算法。与Cooley-Tukey复数FFT算法不同,当因子以一定顺序排列时,RFFT算法在运算数量上更为高效。对于任何顺序的因子,它们具有相同数量的运算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号