首页> 外文期刊>IEEE Transactions on Circuits and Systems. I, Regular Papers >Suboptimal identification of nonlinear ARMA models using anorthogonality approach
【24h】

Suboptimal identification of nonlinear ARMA models using anorthogonality approach

机译:使用正交方法对非线性ARMA模型进行次优识别

获取原文
获取原文并翻译 | 示例

摘要

Proposes a scheme based on orthogonal projection to identify a class of nonlinear auto-regressive, moving-average (NARMA) models. The scheme decouples the nonlinear and linear identification problems, and hence there are two steps. The first step extracts nonlinearities for each delay element within the model via conditional expectations. The second step evaluates dispersion functions to weight the nonlinear functions so that the cost is minimized. This paper focuses on the second step of the proposed scheme. The characteristics of the identification scheme are studied, and simulations are provided
机译:提出了一种基于正交投影的方案,以识别一类非线性自回归移动平均(NARMA)模型。该方案解耦了非线性和线性识别问题,因此有两个步骤。第一步是通过条件期望为模型中的每个延迟元素提取非线性。第二步评估色散函数以对非线性函数加权,以使成本最小化。本文着重于拟议方案的第二步。研究了识别方案的特征,并提供了仿真

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号