首页> 外文期刊>IEEE Transactions on Circuits and Systems. I, Regular Papers >Markov random field image segmentation using cellular neuralnetwork
【24h】

Markov random field image segmentation using cellular neuralnetwork

机译:基于细胞神经网络的马尔可夫随机场图像分割

获取原文
获取原文并翻译 | 示例
       

摘要

Markovian approaches to early vision processes need a huge amount of computing power. These algorithms can usually be implemented on parallel computing structures. With the Cellular Neural Networks (CNN), a new image processing tool is coming into consideration. Its VLSI implementation takes place on a single analog chip containing several thousands of cells. Herein we use the CNN UM architecture for statistical image segmentation. The Modified Metropolis Dynamics (MMD) method can be implemented into the raw analog architecture of the CNN. We are able to implement a (pseudo) random field generator using one layer (one memory/cell) of the CNN. We can introduce the whole pseudostochastic segmentation process in the CNN architecture using 8 memories/cell. We use simple arithmetic functions (addition, multiplication), equality-test between neighboring pixels and very simple nonlinear output functions (step, jigsaw). With this architecture, a real VLSI CNN chip can execute a pseudostochastic relaxation algorithm of about 100 iterations in about 1 ms. In the proposed solution the segmentation is unsupervised. We have developed a pixel-level statistical estimation model. The CNN turns the original image into a smooth one. Then we have two gray-level values for every pixel: the original and the smoothed one. These two values are used for estimating the probability distribution of region label at a given pixel. Using the conventional first-order Markov Random Field (MRF) model, some misclassification errors remained at the region boundaries, because of the estimation difficulties in case of low SNR. By using a greater neighborhood, this problem has been avoided. In our CNN experiments, we used a simulation system with a fixed-point integer precision of 16 bits. Our results show that even in the case of the very constrained conditions of value-representations (the interval is (-64,+64), the accuracy is 0.002) can result in an effective and acceptable segmentation
机译:马尔可夫的早期视觉过程方法需要大量的计算能力。这些算法通常可以在并行计算结构上实现。利用细胞神经网络(CNN),正在考虑使用一种新的图像处理工具。其VLSI实现在包含数千个单元的单个模拟芯片上进行。本文中,我们使用CNN UM体系结构进行统计图像分割。修改后的Metropolis Dynamics(MMD)方法可以实现到CNN的原始模拟体系结构中。我们能够使用CNN的一层(一个内存/单元)来实现(伪)随机字段生成器。我们可以使用8个内存/单元介绍CNN架构中的整个伪随机分段过程。我们使用简单的算术函数(加法,乘法),相邻像素之间的相等性测试以及非常简单的非线性输出函数(阶跃,曲线锯)。通过这种架构,真正的VLSI CNN芯片可以在大约1毫秒内执行大约100次迭代的伪随机松弛算法。在提出的解决方案中,分割是无监督的。我们已经开发了像素级统计估算模型。 CNN会将原始图像转换为平滑图像。然后,每个像素都有两个灰度值:原始值和平滑值。这两个值用于估计给定像素处区域标签的概率分布。使用常规的一阶马尔可夫随机场(MRF)模型,由于在低SNR情况下的估计困难,一些误分类错误仍保留在区域边界处。通过使用更大的邻域,可以避免此问题。在我们的CNN实验中,我们使用了16位定点整数精度的仿真系统。我们的结果表明,即使在非常有限的值表示条件(间隔为(-64,+ 64),精度为0.002)的情况下,也可以实现有效且可接受的细分

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号