首页> 外文期刊>IEEE Transactions on Circuits and Systems. 1 >Training digital circuits with Hamming clustering
【24h】

Training digital circuits with Hamming clustering

机译:用汉明聚类训练数字电路

获取原文
获取原文并翻译 | 示例

摘要

A new algorithm, called Hamming clustering (HC), for the solution of classification problems with binary inputs is proposed. It builds a logical network containing only AND, OR, and NOT ports which, in addition to satisfying all the input-output pairs included in a given finite consistent training set, is able to reconstruct the underlying Boolean function. The basic kernel of the method is the generation of clusters of input patterns that belong to the same class and are close to each other according to the Hamming distance. A pruning phase precedes the construction of the digital circuit so as to reduce its complexity or to improve its robustness. A theoretical evaluation of the execution time required by HC shows that the behavior of the computational cost is polynomial. This result is confirmed by extensive simulations on artificial and real-world benchmarks, which point out also the generalization ability of the logical networks trained by HC.
机译:提出了一种新的算法,称为汉明聚类(HC),用于解决带有二进制输入的分类问题。它构建了一个仅包含AND,OR和NOT端口的逻辑网络,该逻辑网络除了满足给定有限一致训练集中包含的所有输入输出对之外,还能够重构底层的布尔函数。该方法的基本核心是生成输入模式的簇,这些簇属于同一类,并且根据汉明距离而彼此接近。修剪阶段先于数字电路的构建,以降低其复杂性或提高其鲁棒性。 HC所需执行时间的理论评估表明,计算成本的行为是多项式。通过在人工基准和现实基准上进行的大量模拟证实了该结果,该模拟还指出了由HC训练的逻辑网络的泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号