首页> 外文期刊>IEEE Transactions on Circuits and Systems. I, Regular Papers >Efficient optimization by modifying the objective function:applications to timing-driven VLSI layout
【24h】

Efficient optimization by modifying the objective function:applications to timing-driven VLSI layout

机译:通过修改目标函数进行有效的优化:应用于时序驱动的VLSI布局

获取原文
获取原文并翻译 | 示例

摘要

When minimizing a given objective function is challenging because of, for example, combinatorial complexity or points of nondifferentiability, one can apply more efficient and easier-to-implement algorithms to modified versions of the function. In the ideal case, one can employ known algorithms for the modified function that have a thorough theoretical and empirical record and for which public implementations are available. The main requirement here is that minimizers of the objective function do not change much through the modification, i.e., the modification must have a bounded effect on the quality of the solution. Review of classic and recent placement algorithms suggests a dichotomy between approaches that either: (a) heuristically minimize potentially irrelevant objective function (e.g., VLSI placement with quadratic wirelength) motivated by the simplicity and speed of a standard minimization algorithm; or (b) devise elaborate problem-specific minimization heuristics for more relevant objective functions (e.g., VLSI placement with linear wirelength). Smoothness and convexity of the objective functions typically enable efficient minimization. If either characteristic is not present in the objective function, one can modify and/or restrict the objective to special values of parameters to provide the missing properties. After the minimizers of the modified function are found, they can be further improved with respect to the original function by fast local search using only function evaluations. Thus, it is the modification step that deserves most attention. In this paper, we approximate convex nonsmooth continuous functions by convex differentiable functions which are parameterized by a scalar β>0 and have convenient limit behavior as β→0. This allows the use of Newton-type algorithms for minimization and, for standard numerical methods, translates into a tradeoff between solution quality and speed. We prove that our methods apply to arbitrary multivariate convex piecewise-linear functions that are widely used in synthesis and analysis of electrical networks. The utility of our approximations is particularly demonstrated for wirelength and nonlinear delay estimations used by analytical placers for VLSI layout, where they lead to more “solvable” problems than those resulting from earlier comparable approaches [29]. For a particular delay estimate, we show that, while convexity is not straightforward to prove, it holds for a certain range of parameters, which, luckily, are representative of “real-world” technologies
机译:当由于(例如)组合复杂性或不可微性问题而使给定目标函数最小化时,可以将更有效且更易于实现的算法应用于函数的修改版本。在理想情况下,可以使用已知的算法进行修改后的功能,该算法具有完整的理论和经验记录,并且可以使用公开的实现方式。这里的主要要求是目标函数的极小值不会通过修改而发生太大变化,即修改必须对解决方案的质量产生有限的影响。对经典和最新布局算法的回顾表明,在以下两种方法之间存在两分法:(a)启发式地将潜在无关的目标函数(例如,具有平方线长的VLSI布局)归因于标准最小化算法的简单性和速度;或(b)针对更相关的目标函数(例如,具有线性线长的VLSI放置)设计详细的针对特定问题的最小化启发式方法。目标函数的平滑度和凸度通常可以实现有效的最小化。如果目标函数中没有任何一个特征,则可以修改目标和/或将目标限制为特殊的参数值以提供缺少的属性。找到修改功能的最小化器后,可以通过仅使用功能评估进行快速局部搜索来相对于原始功能进一步改进它们。因此,最值得关注的是修改步骤。在本文中,我们通过凸微分函数对凸非光滑连续函数进行逼近,凸微分函数由标量β> 0进行参数化,并且具有方便的极限行为,即β→0。这允许使用牛顿型算法来最小化,并且对于标准数值方法,可以转换为解决方案质量和速度之间的权衡。我们证明了我们的方法适用于任意多元凸分段分段线性函数,这些函数广泛用于电网的综合和分析。我们的近似值的效用在用于VLSI布局的分析布局器的线长和非线性延迟估计中得到了特别证明,与由较早的可比较方法所导致的问题相比,它们会导致更多“可解决”的问题[29]。对于特定的延迟估计,我们表明,虽然凸度不容易直接证明,但它在一定范围的参数中成立,幸运的是,这些参数代表了“现实世界”技术

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号