首页> 外文期刊>IEEE Transactions on Circuits and Systems. I, Regular Papers >Cooperative oscillatory behavior of mutually coupled dynamicalsystems
【24h】

Cooperative oscillatory behavior of mutually coupled dynamicalsystems

机译:相互耦合动力系统的合作振动行为

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we make a qualitative study of the dynamics of a network of diffusively coupled identical systems. In particular, we derive conditions on the systems and on the coupling strength between the systems that guarantee the global synchronization of the systems. It is shown that the notion of “minimum phaseness” of the individual systems involved is essential in ensuring synchronous behavior in the network when the coupling exceeds a certain computable threshold. On the other hand, it is shown that oscillatory behavior may arise in a network of identical globally asymptotically stable systems in case the isolated systems are nonminimum phase. In addition, we analyze the synchronization or nonsynchronization of the network in terms of its topology; that is, what happens if either the number of couplings and/or systems increases? The results are illustrated by computer simulations of coupled chaotic systems like the Rossler system and the Lorenz system
机译:在本文中,我们对扩散耦合的相同系统的网络的动力学进行了定性研究。特别是,我们得出系统上以及系统之间的耦合强度的条件,以保证系统的全局同步。结果表明,当耦合超过某个可计算阈值时,所涉及的单个系统的“最小相位”概念对于确保网络中的同步行为至关重要。另一方面,表明在隔离系统为非最小相位的情况下,相同的全局渐近稳定系统的网络中可能会出现振荡行为。另外,我们从拓扑的角度分析了网络的同步或不同步。也就是说,如果联轴器和/或系统的数量增加,会发生什么?通过耦合混沌系统(如Rossler系统和Lorenz系统)的计算机仿真来说明结果

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号