首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >A new split-radix FHT algorithm for length-q*2mDHTs
【24h】

A new split-radix FHT algorithm for length-q*2mDHTs

机译:长度为q * 2mDHT的新的分基FHT算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new split-radix fast Hartley transform (FHT) algorithm is proposed for computing the discrete Hartley transform (DHT) of an arbitrary length N=q*2m, where q is an odd integer. The basic idea behind the proposed FHT algorithm is that a mixture of radix-2 and radix-8 index maps is used in the decomposition of the DHT. This idea and the use of an efficient indexing process lead to a new decomposition different from that of the existing split-radix FHT algorithms, since the existing ones are all based on the use of a mixture of radix-2 and radix-4 index maps. The proposed algorithm reduces substantially the operations such as data transfer, address generation, and twiddle factor evaluation or access to the lookup table, which contribute significantly to the execution time of FHT algorithms. It is shown that the arithmetic complexity (multiplications+additions) of the proposed algorithm is, in almost all cases, the same as that of the existing split-radix FHT algorithm for length- q*2m DHTs. Since the proposed algorithm is expressed in a simple matrix form, it facilitates an easy implementation of the algorithm, and allows for an extension to the multidimensional case.
机译:本文提出了一种新的分基快速哈特利变换(FHT)算法,用于计算任意长度N = q * 2m的离散哈特利变换(DHT),其中q是一个奇数整数。所提出的FHT算法的基本思想是在DHT的分解中使用基数为2和基数为8的索引图的混合。这种想法和高效索引过程的使用导致了与现有的拆分基数FHT算法不同的新分解,因为现有的算法全部基于混合使用radix-2和radix-4索引图。所提出的算法大大减少了诸如数据传输,地址生成和旋转因子评估或对查找表的访问之类的操作,这极大地影响了FHT算法的执行时间。结果表明,在几乎所有情况下,所提出算法的算术复杂度(乘法+加法)都与现有的长度为q * 2m的DHT的分裂基数FHT算法相同。由于所提出的算法以简单的矩阵形式表示,因此它便于算法的轻松实现,并且可以扩展到多维情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号