首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Real-time call admission control for packet-switched networking by cellular neural networks
【24h】

Real-time call admission control for packet-switched networking by cellular neural networks

机译:蜂窝神经网络用于分组交换网络的实时呼叫允许控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, novel call admission control (CAC) algorithms are developed based on cellular neural networks. These algorithms can achieve high network utilization by performing CAC in real-time, which is imperative in supporting quality of service (QoS) communication over packet-switched networks. The proposed solutions are of basic significance in access technology where a subscriber population (connected to the Internet via an access module) needs to receive services. In this case, QoS can only be preserved by admitting those user configurations which will not overload the access module. The paper treats CAC as a set separation problem where the separation surface is approximated based on a training set. This casts CAC as an image processing task in which a complex admission pattern is to be recognized from a couple of initial points belonging to the training set. Since CNNs can implement any propagation models to explore complex patterns, CAC can then be carried out by a CNN. The major challenge is to find the proper template matrix which yields high network utilization. On the other hand, the proposed method is also capable of handling three-dimensional separation surfaces, as in a typical access scenario there are three traffic classes (e.g., two type of Internet access and one voice over asymmetric digital subscriber line.
机译:在本文中,基于细胞神经网络开发了新颖的呼叫接纳控制(CAC)算法。这些算法可以通过实时执行CAC来实现较高的网络利用率,这对于支持通过分组交换网络进行的服务质量(QoS)通信至关重要。所提出的解决方案在接入技术中具有基本意义,在该技术中,用户群(通过接入模块连接到Internet)需要接收服务。在这种情况下,只能通过接纳那些不会使访问模块过载的用户配置来保留QoS。本文将CAC视为集合分离问题,其中基于训练集近似分离表面。这将CAC转换为图像处理任务,其中要从属于训练集的几个初始点识别复杂的入场模式。由于CNN可以实施​​任何传播模型来探索复杂模式,因此CNN可以执行CAC。主要的挑战是找到合适的模板矩阵以提高网络利用率。另一方面,所提出的方法还能够处理三维分离表面,因为在典型的访问方案中,存在三种业务量类别(例如,两种类型的Internet访问和一种非对称数字用户线上的语音)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号