首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Adaptive nonlinear PCA algorithms for blind source separation without prewhitening
【24h】

Adaptive nonlinear PCA algorithms for blind source separation without prewhitening

机译:自适应非线性PCA算法,无需预增白即可实现盲源分离

获取原文
获取原文并翻译 | 示例

摘要

Blind source separation (BSS) aims at recovering statistically independent source signals from their linear mixtures without knowing the mixing coefficients. Besides independent component analysis, nonlinear principal component analysis (NPCA) is shown to be another useful tool for solving this problem, but it requires that the measured data be prewhitened. By taking into account the autocorrelation matrix of the measured data, we present in this paper a modified NPCA criterion, and develop a least-mean-square (LMS) algorithm and a recursive least-squares algorithm. They can perform the online BSS using directly the unwhitened observations. Since a natural gradient learning is applied and the prewhitening process is removed, the proposed algorithms work more efficiently than the existing NPCA algorithms, as verified by computer simulations on man-made sources as well as practical speech signals
机译:盲源分离(BSS)的目的是在不知道混合系数的情况下,从线性混合中恢复统计独立的源信号。除了独立成分分析之外,非线性主成分分析(NPCA)被证明是解决此问题的另一个有用工具,但它要求对测量数据进行预白化。通过考虑测量数据的自相关矩阵,我们在本文中提出了一种经过修改的NPCA准则,并开发了最小均方(LMS)算法和递归最小二乘算法。他们可以直接使用未变白的观测值执行在线BSS。由于应用了自然梯度学习并且消除了预增白过程,因此,与人工来源以及实际语音信号的计算机仿真相比较,所提出的算法比现有的NPCA算法更有效地工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号