首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >The Stability and Continuity Behavior of the Spectral Factorization in the Wiener Algebra With Applications in Wiener Filtering
【24h】

The Stability and Continuity Behavior of the Spectral Factorization in the Wiener Algebra With Applications in Wiener Filtering

机译:维纳代数中谱分解的稳定性和连续性及其在维纳滤波中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the stability and the continuity behavior of the spectral factorization and of the Wiener filter in the bounded-input bounded-output (BIBO) stability norm. It shows that if the minimum of the given spectra becomes not smaller than half its norm, there exist uniform upper bounds on the stability norm of the spectral factor and Wiener filter. If on the other hand, the minimum becomes smaller than a quarter of its norm, no such upper bounds can exist. In the second part, it is shown that every BIBO-stable spectral density is a continuity point of the spectral factorization. From this, it is derived that the Wiener filter always depends continuously on the data in the BIBO-norm. These results are compared with energy stable systems. It turns out that every continuous spectrum is a discontinuous point for the spectral factorization in the energy norm. It follows that the Wiener filter depends not continuous on the data in this norm.
机译:本文研究了有界输入有界输出(BIBO)稳定范数中频谱分解和维纳滤波器的稳定性和连续性行为。它表明,如果给定光谱的最小值变得不小于其范数的一半,则在光谱因子和维纳滤波器的稳定性范数上存在统一的上限。另一方面,如果最小值变得小于其范数的四分之一,则不会存在这样的上限。在第二部分中,表明每个BIBO稳定的光谱密度都是光谱分解的连续点。从中得出,维纳滤波器始终连续依赖于BIBO范数中的数据。将这些结果与能量稳定系统进行比较。事实证明,每个连续光谱都是能量范数中光谱分解的不连续点。因此,维纳滤波器不连续地依赖于该规范中的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号