首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Generalized Pascal Matrices, Inverses, Computations and Properties Using One-to-One Rational Polynomial s-z Transformations
【24h】

Generalized Pascal Matrices, Inverses, Computations and Properties Using One-to-One Rational Polynomial s-z Transformations

机译:使用一对一有理多项式s-z变换的广义Pascal矩阵,逆,计算和属性

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a one-to-one mapping between the coefficients of continuous-time ($s$-domain) and discrete-time ($z$-domain) IIR transfer functions such that the $s$ -domain numerator/denominator coefficients can be uniquely mapped to the $z$-domain numerator/denominator coefficients. The one-to-one mapping provides a firm basis for proving the inverses of the so-called generalized Pascal matrices from various first-order $s$- $z$ transformations. We also derive recurrence formulas for recursively determining the inner elements of the generalized Pascal matrices from their boundary ones. Consequently, all the elements of the whole generalized Pascal matrix can be easily generated through utilizing their neighbourhood, which can be exploited for further simplifying the Pascal matrix generations. Finally, we reveal and prove some interesting properties of the generalized Pascal matrices.
机译:本文提出了连续时间($ s $域)的系数和离散时间($ z $域)的IIR传递函数之间的一对一映射,使得$ s $域的分子/分母系数可以唯一地映射到$ z $域的分子/分母系数。一对一映射为从各种一阶$ s $-$ z $变换证明所谓的广义Pascal矩阵的逆提供了坚实的基础。我们还推导了递归公式,用于从边界矩阵中递归确定广义Pascal矩阵的内部元素。因此,可以通过利用它们的邻域轻松生成整个广义Pascal矩阵的所有元素,可以将其用于进一步简化Pascal矩阵的生成。最后,我们揭示并证明了广义Pascal矩阵的一些有趣性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号