首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >Design and Implementation of Low-Power Hardware Architecture With Single-Cycle Divider for On-Line Clustering Algorithm
【24h】

Design and Implementation of Low-Power Hardware Architecture With Single-Cycle Divider for On-Line Clustering Algorithm

机译:在线聚类算法的单周期分频器低功耗硬件架构的设计与实现

获取原文
获取原文并翻译 | 示例

摘要

A dual-stage hardware architecture that supports two kinds of moving averages for the on-line clustering algorithm is proposed. The architectural design of this work is different from the one of previous works that focus on the iterative clustering algorithm. The system includes a set of memories that operates in ping-pong mode, so that the Manhattan distances can be computed when the centroids are updated. The high-throughput parallel divider in the moving-average engine is a new solution to reduce the computational time of one division operation to a single clock cycle and to calculate cumulative moving averages with no precision loss. Two hardware examples show the robustness of the proposed architecture, and the architectural analysis is performed with the 90 nm CMOS technology. In the first example, the gate count is the smallest and the normalized power consumption of this work is the lowest among previous works. In the second example, the architecture is compared with related works, which implement the Self-Organizing Map (SOM) algorithm. The proposed work has high flexibility for parameter combinations and can achieve high performance for color quantization in a single iteration. The functionalities of the proposed system are also verified with the background subtraction application.
机译:提出了一种支持两类移动平均的在线聚类算法的双阶段硬件体系结构。这项工作的体系结构设计不同于以前的工作,后者专注于迭代聚类算法。该系统包括一组以乒乓模式运行的存储器,以便在更新质心时可以计算出曼哈顿距离。移动平均引擎中的高吞吐量并行除法器是一种新的解决方案,可以将一个除法运算的计算时间减少到单个时钟周期,并且可以在不损失精度的情况下计算累积移动平均值。两个硬件示例显示了所提出架构的鲁棒性,并且使用90 nm CMOS技术执行了架构分析。在第一个示例中,在先前的作品中,门数最小,并且该作品的归一化功耗最低。在第二个示例中,将体系结构与实现自组织映射(SOM)算法的相关工作进行了比较。所提出的工作对于参数组合具有高度的灵活性,并且可以在单次迭代中实现高性能的颜色量化。提出的系统的功能也通过背景减法应用程序进行了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号