首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus
【24h】

A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus

机译:基于维特林格微积分的功率放大器线性化直接学习自适应方案

获取原文
获取原文并翻译 | 示例

摘要

Performance of radio frequency power amplifiers is often significantly degraded by nonlinearity and memory effects. We study the applicability of complex-domain adaptive filtering to the problem of predistortion kernel learning for power-amplifier linearization. The least-squares error function that arises while deriving the optimal predistortion function is often real with complex-valued arguments, therefore, nonanalytic in the Cauchy-Riemann sense. To avoid the strict Cauchy-Riemann differentiability condition for non-holomorphic functions (e.g. mean-square error), we resort to the theory of Wirtinger calculus, which allows construction of differential operators in a way that is analogous to functions of real variables. By deploying the new differential operators, digital pre-distortion coefficient optimization is carried out in a space isomorphic to the real vector space, at a computational complexity that is significantly lower than that of the real space. We also derive proper Hessian forms for minimization of the objective function and propose a variety of descent-update algorithms, namely Newton, Gauss-Newton, and their quasi-equivalent variants for this problem. Performance assessments and experimental validation of the proposed methodologies are also addressed.
机译:射频功率放大器的性能通常会因非线性和存储效应而大大降低。我们研究了复杂域自适应滤波对功率放大器线性化预失真内核学习问题的适用性。推导最佳预失真函数时出现的最小二乘误差函数通常是带有复数值自变量的实数,因此,在柯西-黎曼意义上是非解析的。为了避免针对非亚纯函数的严格Cauchy-Riemann可微性条件(例如均方误差),我们求助于Wirtinger微积分理论,该理论允许以类似于实变量函数的方式构造微分算子。通过部署新的微分算子,在与真实向量空间同构的空间中进行了数字预失真系数优化,其计算复杂度明显低于真实空间。我们还推导了用于使目标函数最小化的适当的Hessian形式,并针对此问题提出了各种下降更新算法,即Newton,Gauss-Newton及其准等效变体。还讨论了所提出方法的性能评估和实验验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号