首页> 外文会议>Asilomar Conference on Signals, Systems Computers >Direct learning adaptation of power amplifier pre-distortion based on Wirtinger calculus
【24h】

Direct learning adaptation of power amplifier pre-distortion based on Wirtinger calculus

机译:基于Wirtinger演算的功率放大器预失真的直接学习自适应

获取原文

摘要

To improve efficiency of power amplifier (PA), linearity characteristics is often compromised when targeting lower power consumption (class B). Moreover, sophisticated PA efficiency improvement schemes such as envelope tracking tend to further boost the nonlinear characteristics of the PA. Digital pre-distortion (DPD) is a technique to improve the linearity of a power amplifier (PA) at expense of extra processing in the base-band. Derivation of optimal DPD adaptive learning involves optimization of real-valued objective functions of complex variables, whose derivative or gradient does not exist in the standard complex-analysis sense, due to non-holomorphic nature of the function. This is often overlooked in the literature and results in erroneous results. For instance, the methodology presented in [8] computes the gradient with respect to the variable to compute the updates. However, as discussed in [3] and [1], it is the gradient with respect to the conjugate of the variable (and not the variable) that leads to the nonpositive increment of the objective function. We resort to the theory of Wirtinger calculus to derive the proper first-and second-order derivatives (gradient and Hessian operators) of the non-holomorphic objective function and extend the results to optimization methodologies such as Newton, Gauss-Newton, and their quasi-variants. Results are assessed through experimental validation of the proposed methods on WLAN PAs.
机译:为了提高功率放大器(PA)的效率,在降低功耗(B类)时通常会损害线性特性。此外,复杂的功率放大器效率改进方案(例如包络跟踪)往往会进一步增强功率放大器的非线性特性。数字预失真(DPD)是一种以基带中的额外处理为代价来提高功率放大器(PA)线性度的技术。最佳DPD自适应学习的推导涉及对复杂变量的实值目标函数的优化,由于该函数的非全态性质,因此在标准复杂分析意义上不存在其导数或梯度。这在文献中经常被忽略,并导致错误的结果。例如,在[8]中提出的方法计算关于变量的梯度以计算更新。但是,如[3]和[1]中所述,相对于变量(而不是变量)的共轭的梯度导致目标函数的非正增量。我们采用Wirtinger微积分理论来推导非全纯目标函数的适当一阶和二阶导数(梯度和Hessian算子),并将结果扩展到牛顿,高斯牛顿及其准等优化方法-变体。通过对WLAN PA上提出的方法进行实验验证来评估结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号