首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >DT-CNN: An Energy-Efficient Dilated and Transposed Convolutional Neural Network Processor for Region of Interest Based Image Segmentation
【24h】

DT-CNN: An Energy-Efficient Dilated and Transposed Convolutional Neural Network Processor for Region of Interest Based Image Segmentation

机译:DT-CNN:基于利息的图像分割区域的节能扩张和转置卷积神经网络处理器

获取原文
获取原文并翻译 | 示例

摘要

An energy-efficient convolutional neural network (CNN) processor is proposed for real-time image segmentation on mobile devices. The proposed processor utilizes Region of Interest (ROI) based image segmentation to speed up the process and reduce the overall external memory access. Although the ROI based image segmentation degrades the segmentation accuracy, the proposed dilation rate adjustment algorithm, which regulates the receptive field depending on the ROI resolution during dilated convolution, compensates for the accuracy degradation up to 0.2310 mean Intersection over Union (mIoU). In addition, the processor accelerates the dilated and transposed convolution by skipping the redundant zero computations with the proposed delay cells. As a result, the throughput of dilated and transposed convolution is increased up to x159 and x3.84. The delay cells can also support the variable dilation rates in dilated convolution caused by the dilation rate adjustment algorithm. Moreover, the processor selects the operating frequency based on the ROI resolution to save power consumption up to 81.2%. The processor is simulated in 65 nm CMOS technology, and the 6.8 mm(2) processor consumes the 206 mW power consumption with the 4.66 ms of processing time and 3.22 TOPS/W energy-efficiency at the target image segmentation dataset.
机译:提出了一种用于移动设备上的实时图像分段的节能卷积神经网络(CNN)处理器。所提出的处理器利用基于感兴趣的区域(ROI)的图像分割来加速过程并减少整体外部存储器访问。尽管基于ROI的图像分割降低了分割精度,但是提出的扩张速率调节算法,其根据扩张卷积期间的ROI分辨率调节接收场,补偿了高达0.2310的精度下降(Miou)。另外,处理器通过用所提出的延迟单元跳过冗余零计算来加速扩张和转换卷积。结果,扩张和转置卷积的产量增加到X159和X3.84。延迟细胞还可以支持由扩张速率调节算法引起的扩张卷积中的可变扩张速率。此外,处理器基于ROI分辨率选择工作频率,以节省高达81.2%的功耗。处理器在65nm CMOS技术中模拟,6.8 mm(2)处理器在目标图像分割数据集中消耗4.66ms的处理时间和3.22毫秒的4.66 mm功耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号