首页> 外文期刊>Biomedical signal processing and control >Automatic segmentation of the cardiac MR images based on nested fully convolutional dense network with dilated convolution
【24h】

Automatic segmentation of the cardiac MR images based on nested fully convolutional dense network with dilated convolution

机译:基于嵌套完全卷积的密集网络的心脏MR图像自动分割,扩张卷积

获取原文
获取原文并翻译 | 示例

摘要

Cardiac Magnetic Resonance Image (MRI) segmentation plays a helpful role in diagnosing cardiac disease. It is the preliminary step to estimate the functional indices such as ejection fraction (EF) and stroke volume. In this paper, we propose an automatic method for cardiac MRI segmentation based on deep learning. A nested U-shape network with Compressed Dense Blocks (CDBlocks) called BLU-Net is introduced. The Fully Convolutional Dense Network (FCD) is employed as the backbone. Compared with common dense blocks, the CDBlock reduces the connection between the input and the inner layers, and a 1 x 1 convolution is employed to compress the generated feature maps obtained by inner layers. Dilated convolution is employed in the CDBlock to obtain a larger receptive field without losing spatial resolution and reducing the loss of feature information. To learn more semantic information, an additional up-sampling path is adopted, and it makes our model more robust. Our method is evaluated on four cardiac MRI datasets, and the DSC and the HD metrics are employed in the experiment. The experimental results show that BLU-Net outperforms FCD and also outperforms some mainstream networks.
机译:心脏磁共振图像(MRI)分割在诊断心脏疾病方面发挥着乐于助听的作用。估计诸如喷射分数(EF)和行程体积的功能索引是初步步骤。本文提出了一种基于深度学习的心脏MRI分段的自动方法。介绍了具有压缩密集块(CDBlocks)的嵌套U形网络被引入称为BLU-NET。完全卷积的密集网络(FCD)用作骨干。与常见密集块相比,CDBlock减少了输入和内层之间的连接,并且采用1×1卷积来压缩由内层获得的产生的特征图。 CDBlock中使用扩张的卷积以获得更大的接收领域,而不会丢失空间分辨率并降低特征信息的损失。要了解更多语义信息,采用了额外的上采样路径,使我们的模型更加强大。我们的方法在四个心脏MRI数据集中评估,并且在实验中使用DSC和HD度量。实验结果表明,BLU-NET优于FCD,也优于一些主流网络。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第1期|102684.1-102684.9|共9页
  • 作者单位

    Hebei Univ Technol HeBUT Sch Artificial Intelligence Tianjin 300401 Peoples R China;

    Tianjin Med Univ Gen Hosp Tianjin Peoples R China;

    Hebei Univ Technol HeBUT Sch Artificial Intelligence Tianjin 300401 Peoples R China;

    Hebei Univ Technol HeBUT Sch Artificial Intelligence Tianjin 300401 Peoples R China;

    Nanjing Univ Informat Sci & Technol Sch Math & Stat Nanjing Jiangsu Peoples R China;

    Western Univ Dept Med Imaging Digital Imaging Grp London London ON N6A 4V2 Canada;

    Western Univ Dept Med Imaging Digital Imaging Grp London London ON N6A 4V2 Canada;

    HeBUT Hebei Key Lab Robot Percept & Human Robot Interac Tianjin 300401 Peoples R China;

    Hebei Univ Technol HeBUT Sch Artificial Intelligence Tianjin 300401 Peoples R China|HeBUT Hebei Key Lab Robot Percept & Human Robot Interac Tianjin 300401 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cardiac MRI; Image segmentation; Deep learning; Feature reuse;

    机译:心脏MRI;图像分割;深入学习;功能重用;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号