首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >Processing Near Sensor Architecture in Mixed-Signal Domain With CMOS Image Sensor of Convolutional-Kernel-Readout Method
【24h】

Processing Near Sensor Architecture in Mixed-Signal Domain With CMOS Image Sensor of Convolutional-Kernel-Readout Method

机译:CMOS图像传感器在混合信号域中处理附近的传感器架构,CMOS图像传感器的卷积核读数方法

获取原文
获取原文并翻译 | 示例

摘要

In the era of Artificial Intelligence (AI), bio-inspired perceptual computing system design brings favorable opportunities, while still facing considerable challenges in the meantime. Especially for tasks of image recognition in power-limited vision-based Internet of Things (IoT) devices, energy constraints due to the end of Dennard scaling limit the performance of Neural Network (NN) algorithms on popular digital platforms, which would not reach the energy efficiency requirement for embedded AI applications. In this paper, a processing near sensor architecture in mixed-signal domain with CMOS Image Sensor (CIS) of convolutional-kernel-readout method is proposed. Visual data is collected from a smart CIS, which can realize maximum $5 imes 5$ kernel-readout with minimum one slide step for convolutional operations. The outputs of CIS are directly processed by analog processing units locating near CIS without the constraint of digital clock and bottleneck of Analog-to-Digital Converter (ADC). By analyzing the effects of analog noise on classification accuracy, we further evaluate the fault-tolerance of the system to circuit noise and the device imperfection, such as mismatch and process variation. A mixed-signal visual perception chip is fabricated with a $32imes32$ image sensor and a Binarized Neural Network (BNN) processing array integrated with SMIC 180nm standard CMOS mixed-signal process. Measurement results show up to 545.4 GOPS/W energy efficiency with 1.8mW power consumption taking the advantages of ADC-free processing architecture. This work provides a promising alternative for low-power vision-based IoT intelligent applications.
机译:在人工智能(AI)的时代,仿生感知计算系统设计带来了良好的机遇,同时还面临着在此期间相当大的挑战。特别是对于基于电力有限的视觉互联网(物联网)设备中的图像识别任务,由于Dennard缩放结束导致的能量限制限制了神经网络(NN)算法对流行数字平台的性能,这不会到达嵌入式AI应用的能效要求。在本文中,提出了一种利用CMOS图像传感器(CIS)的混合信号域中的传感器架构附近的处理,其具有CMOS图像传感器(CIS)的卷积核读出方法。可视化数据从智能CIS,可实现最高$ 5 时间收集$ 5内核读出与卷积运算最小的一个滑步。 CI的输出通过在CI附近的模拟处理单元直接处理,而无需对模数时钟(ADC)的数字时钟和瓶颈的约束。通过分析的分类精度的模拟噪声的影响,我们进一步评估该系统的容错电路噪声以及设备缺陷,如失配和工艺变化。混合信号视觉感知芯片是用32美元 Times32 $图像传感器和与SMIC 180NM标准CMOS混合信号过程集成的32×32 $图像传感器和二值化神经网络(BNN)处理阵列。测量结果显示,高达545.4幅度/宽能效,功耗为1.8MW,采用ADC的加工架构的优势。这项工作为基于低功耗视觉的IOT智能应用提供了一个有前途的替代方案。

著录项

  • 来源
  • 作者单位

    Beijing Jiaotong Univ Sch Elect & Informat Engn Beijing 100044 Peoples R China;

    Tsinghua Univ Dept Mech Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China|Tsinghua Univ BNRist Beijing 100084 Peoples R China;

    Washington Univ St Louis Dept Elect & Syst Engn St Louis MO 63130 USA;

    Beijing Jiaotong Univ Sch Elect & Informat Engn Beijing 100044 Peoples R China;

    Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China|Tsinghua Univ BNRist Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China|Tsinghua Univ BNRist Beijing 100084 Peoples R China;

    Beijing Jiaotong Univ Sch Elect & Informat Engn Beijing 100044 Peoples R China;

    Washington Univ St Louis Dept Elect & Syst Engn St Louis MO 63130 USA;

    Tsinghua Univ Dept Precis Instrument Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China|Tsinghua Univ BNRist Beijing 100084 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Smart CMOS image sensor; binarized-weight neural network; processing near sensor; lower power IoT;

    机译:智能CMOS图像传感器;二值化重神经网络;在传感器附近处理;较低的电源;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号