首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Nano-Intrinsic True Random Number Generation: A Device to Data Study
【24h】

Nano-Intrinsic True Random Number Generation: A Device to Data Study

机译:纳米本征真实随机数生成:一种用于数据研究的设备

获取原文
获取原文并翻译 | 示例

摘要

We present a circuit technique to extract true random numbers from carrier capture and emission in oxide traps in the emerging redox-based resistive memory (ReRAM). This phenomenon that appears as small changes in current magnitude passing through the device is known as random telegraph noise (RTN) and is increasingly becoming a source of reliability issues in nanometer-scale devices. We demonstrate a circuit that exploits TRN suitable for a true random number generator (TRNG) in security applications, where the system is secure from different adversarial attacks, including side-channel monitoring and machine learning analysis. We experimentally characterize RTN in ReRAMs and extract its dependency to temperature, voltage, and area. We introduce an RTN harvesting circuit to mitigate sensitivities to temperature fluctuations, injected supply noise, and power signal monitoring. We reduced bias and imbalance in data due to high-speed sampling via von Neumann whitening. The circuit is compared to conventional non-differential readout approach. Our approach shows a 7.26 times improvement in autocorrelation and significant resilience against the injected supply noise. We also demonstrate the TRNG's quality and robustness using statistical tests and machine learning attacks. The output of the generator satisfies statistical tests for randomness and is immune to modeling attacks based on the machine learning methods.
机译:我们提出一种电路技术,从新兴的基于氧化还原的电阻式存储器(ReRAM)的氧化物陷阱中的载流子捕获和发射中提取出真正的随机数。这种现象表现为通过设备的电流大小的微小变化,被称为随机电报噪声(RTN),并且越来越成为纳米级设备中可靠性问题的根源。我们演示了一种电路,该电路在安全应用中利用了适用于真随机数生成器(TRNG)的TRN,该系统可免受各种对抗攻击的攻击,包括边信道监控和机器学习分析。我们通过实验来表征ReRAM中的RTN,并提取其对温度,电压和面积的依赖性。我们引入了一种RTN采集电路,以减轻对温度波动,注入的电源噪声和功率信号监视的敏感性。我们通过冯·诺依曼(von Neumann)白化技术进行了高速采样,从而减少了数据的偏差和不平衡。将该电路与常规的非差分读出方法进行了比较。我们的方法显示出自相关性提高了7.26倍,并且对注入的电源噪声具有显着的弹性。我们还使用统计测试和机器学习攻击证明了TRNG的质量和鲁棒性。生成器的输出满足随机性的统计测试,并且不受基于机器学习方法的建模攻击的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号