首页> 外文期刊>Biomedical Circuits and Systems, IEEE Transactions on >QRS Detection Based on Multiscale Mathematical Morphology for Wearable ECG Devices in Body Area Networks
【24h】

QRS Detection Based on Multiscale Mathematical Morphology for Wearable ECG Devices in Body Area Networks

机译:基于多尺度数学形态学的QRS检测在人体局域网中的可穿戴ECG设备

获取原文
获取原文并翻译 | 示例

摘要

A novel wearable electrocardiograph (ECG) QRS detection algorithm for wearable ECG devices in body area networks is presented in this paper, which utilizes the multistage multiscale mathematical morphology filtering to suppress the impulsive noise and uses the multiframe differential modulus accumulation to remove the baseline drift and enhance the signal. The proposed algorithm, verified with data from the MIT/BIH Arrhythmia Database and wearable ECG devices, achieves an average QRS detection rate of 99.61%, a sensitivity of 99.81%, and a positive prediction of 99.80%. It compares favorably to the published methods.
机译:提出了一种新颖的可穿戴式心电图(ECG)QRS检测算法,用于人体局域网中的可穿戴式ECG设备,该算法利用多级多尺度数学形态学滤波来抑制脉冲噪声,并利用多帧差分模量累积来消除基线漂移和增强信号。该算法经过MIT / BIH心律失常数据库和可穿戴式ECG设备的数据验证,平均QRS检测率为99.61%,灵敏度为99.81%,阳性预测为99.80%。与公开的方法相比,它具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号