首页> 外文期刊>Biomedical Circuits and Systems, IEEE Transactions on >Compact Low-Power Cortical Recording Architecture for Compressive Multichannel Data Acquisition
【24h】

Compact Low-Power Cortical Recording Architecture for Compressive Multichannel Data Acquisition

机译:紧凑的低功耗皮质记录架构,用于压缩多通道数据采集

获取原文
获取原文并翻译 | 示例
           

摘要

This paper introduces an area- and power-efficient approach for compressive recording of cortical signals used in an implantable system prior to transmission. Recent research on compressive sensing has shown promising results for sub-Nyquist sampling of sparse biological signals. Still, any large-scale implementation of this technique faces critical issues caused by the increased hardware intensity. The cost of implementing compressive sensing in a multichannel system in terms of area usage can be significantly higher than a conventional data acquisition system without compression. To tackle this issue, a new multichannel compressive sensing scheme which exploits the spatial sparsity of the signals recorded from the electrodes of the sensor array is proposed. The analysis shows that using this method, the power efficiency is preserved to a great extent while the area overhead is significantly reduced resulting in an improved power-area product. The proposed circuit architecture is implemented in a UMC 0.18 m CMOS technology. Extensive performance analysis and design optimization has been done resulting in a low-noise, compact and power-efficient implementation. The results of simulations and subsequent reconstructions show the possibility of recovering fourfold compressed intracranial EEG signals with an SNR as high as 21.8 dB, while consuming 10.5 W of power within an effective area of 250 m250 m per channel.
机译:本文介绍了一种面积和功率高效的方法,用于在传输之前压缩记录可植入系统中使用的皮质信号。压缩感测的最新研究显示了稀疏生物信号的亚奈奎斯特采样的有希望的结果。尽管如此,该技术的任何大规模实施都面临着由硬件强度增加引起的关键问题。就区域使用而言,在多通道系统中实现压缩感测的成本可能会比不进行压缩的常规数据采集系统高得多。为了解决这个问题,提出了一种新的多通道压缩感测方案,该方案利用了从传感器阵列的电极记录的信号的空间稀疏性。分析表明,使用这种方法可以在很大程度上保留电源效率,同时显着减少面积开销,从而改善电源面积乘积。所提出的电路架构是在UMC 0.18 m CMOS技术中实现的。已经进行了广泛的性能分析和设计优化,从而实现了低噪声,紧凑和节能的实现。仿真结果和随后的重建结果表明,可以恢复SNR高达21.8 dB的四重压缩颅内EEG信号,同时在每个通道250 m250 m的有效区域内消耗10.5 W的功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号