...
首页> 外文期刊>IEEE transactions on biomedical circuits and systems >Real-Time Simulation of Passage-of-Time Encoding in Cerebellum Using a Scalable FPGA-Based System
【24h】

Real-Time Simulation of Passage-of-Time Encoding in Cerebellum Using a Scalable FPGA-Based System

机译:使用基于FPGA的可扩展系统在小脑中实时编码的实时仿真

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The cerebellum plays a critical role for sensorimotor control and learning. However, dysmetria or delays in movements’ onsets consequent to damages in cerebellum cannot be cured completely at the moment. Neuroprosthesis is an emerging technology that can potentially substitute such motor control module in the brain. A pre-requisite for this to become practical is the capability to simulate the cerebellum model in real-time, with low timing distortion for proper interfacing with the biological system. In this paper, we present a frame-based network-on-chip (NoC) hardware architecture for implementing a bio-realistic cerebellum model with neurons, which has been used for studying timing control or passage-of-time (POT) encoding mediated by the cerebellum. The simulation results verify that our implementation reproduces the POT representation by the cerebellum properly. Furthermore, our field-programmable gate array (FPGA)-based system demonstrates excellent computational speed that it can complete 1sec real world activities within 25.6 ms. It is also highly scalable such that it can maintain approximately the same computational speed even if the neuron number increases by one order of magnitude. Our design is shown to outperform three alternative approaches previously used for implementing spiking neural network model. Finally, we show a hardware electronic setup and illustrate how the silicon cerebellum can be adapted as a potential neuroprosthetic platform for future biological or clinical application.
机译:小脑对于感觉运动控制和学习起着至关重要的作用。但是,由于小脑损伤而引起的子宫发育不良或动作迟缓目前无法完全治愈。神经假体是一种新兴技术,可以潜在地替代大脑中的此类运动控制模块。使其成为现实的先决条件是能够实时模拟小脑模型的功能,并且具有低时序失真,可以与生物系统正确连接。在本文中,我们提出了一种基于帧的片上网络(NoC)硬件架构,用于实现具有神经元的生物现实小脑模型,该模型已用于研究时序控制或介导的时间流逝(POT)编码小脑。仿真结果验证了我们的实现正确再现了小脑的POT表示。此外,我们基于现场可编程门阵列(FPGA)的系统展示了出色的计算速度,可以在25.6 ms内完成1秒的现实世界活动。它还具有高度可伸缩性,因此即使神经元数量增加一个数量级,它也可以保持大约相同的计算速度。我们的设计表现出优于以前用于实现尖峰神经网络模型的三种替代方法。最后,我们展示了一种硬件电子装置,并说明了如何将小脑硅片用作未来生物学或临床应用的潜在神经修复平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号