首页> 外文期刊>IEEE transactions on biomedical circuits and systems >Deep Residual Networks for Sleep Posture Recognition With Unobtrusive Miniature Scale Smart Mat System
【24h】

Deep Residual Networks for Sleep Posture Recognition With Unobtrusive Miniature Scale Smart Mat System

机译:具有不引人注目的微型尺度智能垫系统的睡眠姿势识别的深度剩余网络

获取原文
获取原文并翻译 | 示例

摘要

Sleep posture, as a crucial index for sleep quality assessment, has been widely studied in sleep analysis. In this paper, an unobtrusive smart mat system based on a dense flexible sensor array and printed electrodes along with an algorithmic framework for sleep posture recognition is proposed. With the dense flexible sensor array, the system offers a comfortable and high-resolution solution for long-term pressure sensing. Meanwhile, compared to other methods, it reduces production costs and computational complexity with a smaller area of the mat and improves portability with fewer sensors. To distinguish the sleep posture, the algorithmic framework that includes preprocessing and Deep Residual Networks (ResNet) is developed. With the ResNet, the proposed system can omit the complex hand-crafted feature extraction process and provide compelling performance. The feasibility and reliability of the proposed system were evaluated on seventeen subjects. Experimental results exhibit that the accuracy of the short-term test is up to 95.08% and the overnight sleep study is up to 86.35% for four categories (supine, prone, right, and left) classification, which outperform the most of state-of-the-art studies. With the promising results, the proposed system showed great potential in applications like sleep studies, prevention of pressure ulcers, etc.
机译:作为睡眠质量评估的关键指标,睡眠姿势已被广泛研究睡眠分析。本文提出了一种基于密集柔性传感器阵列和印刷电极的不引声智能垫系统以及用于睡眠姿势识别的算法框架。采用密集的柔性传感器阵列,该系统提供舒适高分辨率的高分辨率,可用于长期压力传感。同时,与其他方法相比,它降低了生产成本和计算复杂性,垫子的较小区域并提高了传感器较少的可移植性。为了区分睡眠状态,开发了包括预处理和深度残差网络(Reset)的算法框架。使用Reset,所提出的系统可以省略复杂的手工制作的特征提取过程并提供令人信服的性能。提出的系统的可行性和可靠性在十七个科目中进行了评估。实验结果表明,短期试验的准确性高达95.08%,四大类(仰卧,容易,右侧和左侧)分类的综合睡眠研究高达86.35%,这优于最大的状态 - 艺术研究。通过有前途的结果,所提出的系统在睡眠研究中显示出巨大的潜力,预防压力溃疡等。

著录项

  • 来源
  • 作者单位

    Fudan Univ Sch Informat Sci & Technol Ctr Intelligent Med Elect Shanghai 200433 Peoples R China;

    Fudan Univ Sch Informat Sci & Technol Ctr Intelligent Med Elect Shanghai 200433 Peoples R China|Fudan Univ Human Phenome Inst Shanghai 201203 Peoples R China;

    Chinese Acad Sci Printable Elect Res Ctr Suzhou Inst Nanotech & Nanobion Suzhou 215123 Peoples R China;

    Terre Hommes Fdn F-75006 Paris France;

    Japanese Soc Med Elect & Biol Engn Japanese Soc Life Support Technol Tokyo 1698050 Japan|Japanese Soc Nursing Sci & Engn Tokyo 1698050 Japan;

    Fudan Univ Sch Informat Sci & Technol Ctr Intelligent Med Elect Shanghai 200433 Peoples R China;

    Fudan Univ Sch Informat Sci & Technol Ctr Intelligent Med Elect Shanghai 200433 Peoples R China;

    Fudan Univ Sch Informat Sci & Technol Ctr Intelligent Med Elect Shanghai 200433 Peoples R China|East China Univ Sci & Thchnol Sch Art Design & Media Shanghai 200237 Peoples R China;

    Fudan Univ Sch Informat Sci & Technol Ctr Intelligent Med Elect Shanghai 200433 Peoples R China|Fudan Univ Human Phenome Inst Shanghai 201203 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sleep apnea; Electrodes; Monitoring; Immune system; Sensor arrays; Pressure sensors; Data acquisition; Sleep posture recognition; smart mat system; unobtrusive monitoring; ResNet;

    机译:睡眠呼吸暂停;电极;监测;免疫系统;传感器阵列;压力传感器;数据采集;睡眠姿势识别;智能垫系统;不引人注目的监测;reset;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号