首页> 外文期刊>ACM transactions on intelligent systems >A Real-Time Hand Posture Recognition System Using Deep Neural Networks
【24h】

A Real-Time Hand Posture Recognition System Using Deep Neural Networks

机译:基于深度神经网络的实时手势识别系统

获取原文
获取原文并翻译 | 示例

摘要

Hand posture recognition (HPR) is quite a challenging task, due to both the difficulty in detecting and tracking hands with normal cameras and the limitations of traditional manually selected features. In this article, we propose a two-stage HPR system for Sign Language Recognition using a Kinect sensor. In the first stage, we propose an effective algorithm to implement hand detection and tracking. The algorithm incorporates both color and depth information, without specific requirements on uniform-colored or stable background. It can handle the situations in which hands are very close to other parts of the body or hands are not the nearest objects to the camera and allows for occlusion of hands caused by faces or other hands. In the second stage, we apply deep neural networks (DNNs) to automatically learn features from hand posture images that are insensitive to movement, scaling, and rotation. Experiments verify that the proposed system works quickly and accurately and achieves a recognition accuracy as high as 98.12%.
机译:手势识别(HPR)是一项非常具有挑战性的任务,这是因为用普通相机检测和跟踪手都很困难,而且传统手动选择功能也有局限性。在本文中,我们提出了一种使用Kinect传感器的两阶段HPR系统,用于手语识别。在第一阶段,我们提出了一种有效的算法来实现手部检测和跟踪。该算法结合了颜色和深度信息,对均色或稳定背景没有特殊要求。它可以处理手非常靠近身体其他部位的情况,或者手不是距相机最近的物体,并且可以遮挡由脸部或其他手引起的手。在第二阶段,我们应用深度神经网络(DNN)从手势图像中自动学习对运动,缩放和旋转不敏感的特征。实验证明,该系统工作迅速,准确,识别率高达98.12%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号